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Abstract
Architecture-Driven Modernization (ADM) is a special kind of reengineering that employs models along the process. The
main ADM metamodel is the Knowledge Discovery Metamodel (KDM), which is a platform-independent metamodel able
to represent several views of a system. Although a lot of research is currently focused on the reverse engineering phase of
ADM, little has been devoted to the forward engineering one, mainly on the generation of Platform-Specific Models (PSMs)
from KDM. The forward engineering phase is essential because it belongs to the end of the horseshoe model, completing
the reengineering process. Besides, the lack of research and the absence of tooling support in this phase hinder the industrial
adoption of ADM. Therefore, in this paper, we present a process for creating Transformation Engines (TEs) capable of
transforming KDM instances in a chosen PSM. We highlight two main contributions in this work. The first is a process that
software engineers can follow for building TEs capable of generating PSM instances (e.g., Java model, Python model, etc.)
from KDM instances. Having that on their hands, modernization engineers can then use generators for generating language-
specific source code from the PSM. The second is delivering a specific TE called RUTE-K2J, which is able to generate
Java models from KDM models. The transformation rules of RUTE-K2J have been tested considering sets of common code
structures that normally appear when modernizing systems. The test cases have shown that in this version of RUTE the
transformation rules are able to correctly generate 92% of the source code submitted to the transformation.
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1 Introduction

Software systems are acknowledged as legacy when they ex-
hibit two main characteristics: (i) high maintenance costs
(effort/time/resources) and (ii) being still essential to sup-
port current business processes. These systems cannot be
discarded since they retain mission-critical business knowl-
edge incorporated along years of maintenance [1]. For many
years, traditional software reengineering has been used as a
solution to this challenge, since it retains all the knowledge
of these systems. However, it is well known that 50% of the
reengineering projects fail, and one of the main reasons is the
lack of standardization, which hinders the reusability of solu-
tions and interoperability among reengineering tools [2, 3].

In 2003 the Object Management Group (OMG) started
the elaboration of the Architecture-Driven Modernization
(ADM). The main idea was to define standards for the reengi-
neering process to promote industry consensus on modern-
ization solutions and elevating the success in modernization
projects.

Many companies have demonstrated interest in the ADM
philosophy, as can be seen in the ADM vendor directory
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listing website [4]. There are several IT companies listed as
ADM partners. Some companies are specialized in modern-
izing systems, whereas others offer this type of service in
their portfolio of solutions.

The most important ADM metamodel is the Knowledge
Discovery Metamodel (KDM) [5]. Its goal is to capture
and represent system architecture details in a platform and
language-independent way. One of the main problems KDM
intends to solve is avoiding the proliferation of different meta-
models for representing legacy systems. It intends to be a
standardized form of representing legacy systems, instead of
letting modernization engineers free for employing different
metamodels.

Figure 1 shows the horseshoe reengineering cycle and
how KDM can be applied in three steps. In the reverse engi-
neering, a legacy system is parsed into a KDM instance that
represents it. In the restructuring phase the KDM instance is
refactored to solve some identified problems or even to have
its structure improved, resulting in a new modernized KDM
instance. In the forward engineering phase the modernized
KDM is used as input for generating the system, completing
the modernization cycle. Within this last phase, there are still
two steps, the generation of a PSM instance from the KDM
and the generation of the source code from the PSM. In this
paper, we focus on the former.

As previously said, most of current research on ADM
has concentrated on the reverse engineering phase of ADM.
Some examples are MoDisco [6], Gra2Mol [7], and Three-
Phase Approach [8]. However, little research has been con-
ducted on forward engineering from KDM. There is some
research on the entire modernization process, so they have
addressed the forward engineering phase somehow. How-
ever, the focus of these initiatives was not on bringing con-
tributions to the forward engineering phase; thus they do not
provide enough details about it [9, 10].

Therefore, to fill this research gap, we have developed a
process for supporting modernization engineers in the cre-
ation of transformation engines (TE) that transform KDM
instances to instances of some PSM, such as Java models,
Python models, and others. In this work, we consider that
“modernization engineers” are responsible for creating tools
for supporting software modernization processes. In contrast,
a software engineer is responsible for using the created tools.

The proposed process has five iterative and incremental
phases, where in each cycle, one transformation rule is devel-
oped or evolved. This process emerged from the experience
in creating a TE called RUTE-K2J that takes a KDM instance
as input and automatically generates a Java model from it.
An important point is that RUTE-K2J contributes from the
second to the last step of ADM horseshoe model, opening
many research possibilities for researchers and also compa-
nies in the industry to assess the potential of ADM regarding
reusability, effectiveness, etc.

RUTE-K2J was evaluated with test cases in order to guar-
antee the correctness when performing the transformations.
During the execution of the test cases, we used the sup-
port of Modisco tool to generate a KDM instance (input of
the RUTE-K2J engine) and the Acceleo tool for generating
source code from the Java model (output of the RUTE-K2J
engine). So, we compare the code generated by Acceleo
allowed to the original source code with aims at evaluating
the correctness of the transformation. Our evaluation showed
that 92% of the original source code submitted was preserved
through the transformation.

In this paper, we present the following additional con-
tributions compared to our previous conference paper [11]
(Angulo et al. 2018): i) a complete rewriting of the whole
paper; ii) inclusion of new activities and phases; and iii) ex-
tension of the related work and discussion sections.

The remainder of this paper is organized as follows. Sec-
tion 2 presents necessary background information related to
ADM and KDM and model transformations. Then Sect. 3
presents the guidelines for creating KDM2PSM transforma-
tion engines. In Sect. 4, we present the RUTE-K2J Trans-
formation Engine. In Sect. 5, we present the validation of
RUTE-K2J. Section 6 brings some discussions about our ap-
proach and our results, and Sect. 7 summarizes related work.
Finally, Sect. 8 draws some conclusions and describes plans
for future work.

2 Background

2.1 ADM & KDM

In 2003, OMG proposed the Architecture-Driven Modern-
ization (ADM), an effort to standardize the process of mod-
ernization of legacy systems using models [3]. ADM pro-
motes system modernization based on the use of models at
different abstraction levels [12]: CIM (Computation Indepen-
dent Model, PIM (Platform-Independent Model), and PSM
(Platform-Specific Model). CIM focuses on the business en-
vironment, describing requirements at a very abstract level,
without any reference to implementation aspects. In addi-
tion, PIM is a representation of a system from the platform-
independent viewpoint. It focuses on the operation of a sys-
tem while hiding the details necessary for a particular plat-
form. Finally, PSM is a technological view of a system from
the point of view of a platform at a low level of abstraction. In
this context, ADM proposes the use of automated transfor-
mations between the models to generate new systems from
legacy systems by following a horseshoe process.

The ADM modernization cycle involves three phases
shown in Fig. 1: (i) reverse engineering, (ii) restructuring,
and (iii) forward engineering. In the reverse reengineering
phase the knowledge is extracted from source code, and a
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Fig. 1 Horseshoe software
modernization model

PSM is generated. The PSM model serves as the basis for
generating a KDM considered as PIM and CIM. Then in the
restructuring phase refactorings are performed in the KDM
instance that represents the legacy system to get an improved
version of the system. Finally, in the forward engineering the
refactored instance is transformed into source code again.
The proposed process focuses on the forward engineering
phase, specifically in the last two steps. Figure 1 shows the
focus of this work marked with a square with dashed line
border.

ADM considers seven standard metamodels, but cur-
rently only four of them have been released: Abstract Syn-
tax Tree Metamodel (ASTM), Software Metrics Metamodel
(SMM), Structured Patterns Metamodel Standard (SPMS),
and KDM [3]. KDM is an OMG metamodel adopted as
ISO/IEC 19506 [13, 14] capable of representing a complete
software system. It can be seen as a family of metamodels
that share the same vocabulary and terminology, facilitating
the relationships among metaclasses in different abstraction
levels. The specification is organized in four layers: Infras-
tructure Layer, Program Elements Layer, Runtime Resource
Layer, and Abstractions Layer, where each layer is based
on the previous one. These layers are further organized into
packages, and each one corresponds to a certain indepen-
dent facet of knowledge about the software, such as the Code
View, Structure View, Data View, among others.

Figure 2 shows the layers and packages in KDM. The
Infrastructure Layer consists of the following three packages:
Core, “Kdm”, and Source. The Core and “Kdm” packages
define together common metamodel elements that constitute
the infrastructure for other packages. The Source package
defines the Inventory model, which enumerates the artifacts
of the existing software system and defines the mechanism
of traceability links between the KDM elements and their
original representation in the source code of the existing
software system.

Fig. 2 Layers and packages in KDM [5]

The Program Elements Layer consists of the Code and Ac-
tion packages. These packages collectively define the Code
model that represents the implementation level assets of the
existing software system, determined by the programming
languages used in the developments of the existing soft-
ware system. The Code package defines metamodel elements
that represent low-level building blocks of software, such as
procedures, data types, classes, and variables. Examples of
these elements are ClassUnit, MethodUnit, StorableUnit, In-
terfaceUnit, and PrimitiveType. The Action package defines
metamodel elements that represent statements as the relation-
ship endpoints and most low-level KDM relationships, such
as ActionElements, ActionFlow, and DataRelations. Exam-
ples of these elements in the package are ActionElement,
Datatype, TryUnit, and CatchUnit.

The Runtime Resources Layer represents higher-level
knowledge about existing software systems; this layer has
the following four packages: Platform, UI, Event, and Data.
Finally, the Abstractions Layer represents even higher-level
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Fig. 3 Model transformation

abstractions about existing software, such as domain-specific
knowledge, business rules, implemented by the existing soft-
ware system, and architectural knowledge about the existing
software system.

2.2 Model transformations

Model(-to-model) transformation is a core asset in model-
driven engineering (MDE), where models are first-class enti-
ties. It is the process of converting models into other models
for the purposes of supporting rigorous model evolution,
verification, refinement, and code generation [15, 16].

As the work presented in this paper is totally based on
model transformation, we use Fig. 3 for explaining the mod-
els and metamodels involved in this process. The figure is
divided into two parts separated by a dashed line. In the
lower part of the figure, it is the transformation itself where
a Transformation Engine takes a model instance MA as in-
put, executes some transformation rules (TAB) over it, and
writes a new model instance MB . That is the process that our
Transformation Engine RUTE-K2J performs.

The upper part of the figure represents the metamodels,
i.e., the model instance MA conforms to a metamodel M MA,
the transformation rule conforms to a metamodel M MT , and
the model instance MB conforms to a metamodel M MB . It
is also shown that all these metamodels (MMa, MMT, and
MMb) also conforms to a metametamodel (MMM).

An important element in model transformations is the
transformation rules (TRs). TRs describe how elements of a

source model should be translated into elements of a target
model. A transformation rule has two parts, a left-hand side
(LHS) and a right-hand side (RHS). The LHS accesses the
source model, whereas the RHS expands in the target model.
To develop a transformation rule, it is necessary to estab-
lish a mapping between the source metamodel and the target
metamodel aiming at specifying the way that target model
elements must be generated from source model elements;
this logic must be specified using a transformation language
such as ATL and QVT (Query/View/Transformation). The
process we show in this paper guides modernization engi-
neers in creating a set of transformation rules.

Another important element is the transformation engine
that executes the set of transformation rules. Each trans-
formation rule has a purpose, i.e., transforming a specific
structure. Therefore the set of transformation rules allow a
complete transformation of all the structures present in the
input and create an equivalent output model. At the bottom of
Fig. 3, we can observe the transformation engine that reads
the instance MA, executes the set of transformation rules,
and writes an instance MB that conforms to M MB .

Model transformation can be classified according to the
metamodels that the input and output models are conformed
to. Under this criterion, there are two types of transforma-
tion, exogenous and endogenous. An endogenous transfor-
mation, also called an inplace transformation, translates the
source model into a target model that conforms to the source
model’s metamodel, e.g., a refactoring of a KDM instance.
In contrast, an exogenous transformation, or out-place trans-
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Fig. 4 Phases of the process for creating KDM2PSM transformation engines

formation, uses different source and target metamodels, e.g.,
transforming a KDM instance to Java model instance [17],
as we did here in this work. According to the transformation
directions, a transformation can be unidirectional or bidi-
rectional. A unidirectional model transformation has only
one execution direction, that is, it always modifies the target
model according to the source model. In case of bidirectional
model transformation, the source model may be changed
along with the target model if the transformation is executed
in the direction of target-of-source.

3 A process for creating KDM2PSM
transformation engines

This section presents our process for creating KDM2PSM
transformation engines. The process is represented in Figs. 4
and 5 in different abstraction levels and in Table 1, which
summarizes textually all the phases and activities. In the
case of the table, it shows a more concise way to check the
activities and input/output artifacts.

Figure 4 shows a more general view, focusing on the
phases of the process. The return arrow (at the bottom) in-
dicates the iterative and incremental nature of the process. It
is iterative because the phases can be repeated several times
until there are no more transformation requirements to be
resolved. It is incremental because every time an iteration

is completed, a transformation rule is created or evolved, in
case it already exists. As a result, the created rule is added
to the existing set of developed rules, complementing the
transformation engine.

Figure 5 shows the process in a deeper way, showing the
phases, activities, and the main artifacts used to complete
each activity. Each following subsection details one of the
phases of our process.

3.1 Phase 1 – defining the target PSM and
reverse engineering tool

The first phase shown in Fig. 4 has two goals. The first
one is to define which PSM (Java Model, C# Model, etc.)
will be generated. It is advisable that the chosen PSM has
complete and available documentation that explains its meta-
classes, relationships, and all other structural details of the
metamodel. This is important because these details will be
needed along the process. In fact, the choice of the PSM de-
pends on the target programming language. However, most
of the time, modernization engineers know in advance in
which language the source code must be generated.

The second goal is to elect a reverse engineering tool
capable of generating instances of the chosen PSM from
the source code. An important point here is regarding the
quality of the PSM and the reverse engineering tool chosen.
Regarding the PSM, there may exist different versions with
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Fig. 5 Phases and activities of
the process for creating
KDM2PSM transformation
engine

Table 1 Summary of the phases and activities of the process

Phase name Activities Input Output

Phase 1 – – Target PSM and Reverse
Engineering tool chosen

Phase 2 Activity 2.1 Eliciting the
Transformation Requirement and
Code Snippets

– Transformation Requirement and
Source Code Snippet

Activity 2.2 Generating the
Target PSM Instance

Source Code Snippet Target PSM instance

Activity 2.3 Generating the
KDM instance

Source Code Snippet KDM instance

Phase 3 Activity 3.1 Creating
KDM2PSM Mapping

KDM instance Target PSM
Instance

KDM-PSM mapping

Activity 3.2 Elaborating the
Transformation Rule

KDM-PSM mapping Transformation Rule

Phase 4 – Transformation Rule Tested transformation Rule

Phase 5 Activity 5.1 Creating the
Dependency Matrix

Transformation Rules Dependency Matrix

Activity 5.2 Identifying and
Prioritizing Leaf Rules

Dependency Matrix Leaf Rule Matrix

Activity 5.3 Defining Test Data Leaf Rule Matrix Test Cases
Activity 5.4 Running Test Case Test Cases list of differences
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different characteristics and metaclasses. In the same way,
there may also exist different reverse engineering tools that
are able to generate PSM instances with subtle differences.
So, it is important for modernization engineers to be aware
of these differences and choose the one that best fits with the
requirements. The output of this phase is the PSM metamodel
and the reverse engineering tool chosen.

3.2 Phase 2 – elaborating the initial artifacts

The second phase has three activities shown in Fig. 5. This
phase aims at eliciting the transformation requirement and
elaborating the PSM and KDM instance. The activities are
described in detail in the next subsections.

Activity 2.1 – Eliciting the transformation requirement
and code snippets

The main purpose of this activity is to elicit transformation
requirements. In the context of this work, a transformation
requirement is a textual sentence of a needed transformation,
i.e., it is a textual sentence of the kind of source code element
that the transformation engine must be able to generate in the
target PSM. An example of a transformation requirement is
the following: “The transformation engine must be able to
generate If statements with N conditions”. Another exam-
ple is “The Transformation engine must be able to generate
While statements”. In addition, eliciting the transformation
requirements is a way of documenting the transformation
engine, facilitating future maintenance and evolution tasks.

After defining the transformation requirement, the mod-
ernization engineer must implement or obtain a code snippet
that represents the requirement. Sometimes it will be neces-
sary to elaborate a complete and detailed code snippet taking
into account the body, types, and relationships of the meth-
ods. In other cases, it may be necessary only to generate
signatures of methods, classes, attributes, and parameters.
Therefore this activity depends on the purpose of the code
generation. The output of the activity is the transformation
requirement and a source code snippet that represents that
requirement.

Activity 2.2 – Generating the target PSM instance
This activity aims at generating a PSM instance from

a code snippet obtained or elaborated in the previous ac-
tivity, which is called here “Target PSM”. To do that, the
modernization engineer needs to use the reverse engineering
tool, chosen in Phase 1, and to provide as input the code
snippet developed in the previous activity. It is important to
emphasize that a metamodel involves a lot of metaclasses,
and in the case of the PSM instance, only few metaclasses
are instantiated since they represent only the transformation
requirement.

The PSM instance is an important artifact for two rea-
sons. First, in Activity 3.1, it helps in the creation of the

mapping, i.e., in the identification of the equivalent meta-
classes between the KDM and the PSM metamodel. Second,
in Activity 4.2 the PSM is used as a target to verify the in-
tegrity of the output PSM. Note that this PSM instance serves
as an oracle, since the ideal is that the transformation rule
would be able to generate an instance equivalent to the one
generated here.

To facilitate the understanding of the process, we present
a concrete example that involves the use of a specific PSM
model. So we define the Java model as the PSM and define
the following transformation requirement: “The transforma-
tion engine must be able to generate the If statements with
one condition plus the Else block”.Thus the modernization
engineer must generate a code snippet from this requirement,
and then a Java instance (PSM) is generated from this code
snippet.

Listing 1 shows part of the Java instance. In line 5, we
can observe the beginning of the If-then-else structure rep-
resented with the IfStatement metaclass in the Java instance.
In line 8, we can notice that the Boolean expression of the
structure is represented with the InfixExpression metaclass.
At last, in lines 11 and 14, we can observe that the Then state-
ment and the Else statement are represented with the Then-
Statement and ElseStatement, respectively; both elements are
of Block metaclass type.

Activity 2.3 – Generating the KDM instance
The goal of this activity is the generation of the KDM

instance from the source code snippet developed in Activ-
ity 2.1. To create the KDM instance, the modernization engi-
neer must use existing modernization tools. In the literature,
there are some tools that can automate this process such as:
(i) Modisco [6], which is able of generating KDM instance
from Java source code; (ii) the tool proposed by Feliu Trias
et al. [18], which is able of obtaining the KDM instance
from PHP source code; (iii) an approach of Christian Wulf
et al. [8], who proposed to transform C# programs to KDM;
and (iv) the commercial software BLUAGE [19], which can
transform Cobol code to KDM.

The KDM instance is an important artifact, because in
Activity 3.1, it is used (with the target PSM) in the iden-
tification of equivalent-metaclasses. In addition, the KDM
instance is the input of Activity 4.1, and it is used as test data
to execute the transformation rule.

At this point of the process, the modernization engineer
would get the code snippet that represents the transforma-
tion requirement “If-then-else” structure, and he will use the
Modisco tool to generate a KDM instance.

Listing 2 shows part of the KDM instance. To recognize
their elements with the help of the KDM metamodel doc-
umentation, we can realize that, in line 6, the beginning of
the If-then-else structure is represented with the ActionEle-
ment metaclass with kind equal to If. In line 9 the Boolean
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Listing 1 Target PSM of If-then-else structure

Listing 2 KDM instance of If-then-else structure

expression is represented with the ActionElement metaclass
with kind equal to Infix expression. At last, we can recognize
in lines 12 and 15 the Then statement and the Else state-
ment of the structure that are represented with the BlockUnit
metaclass in the KDM instance.

3.3 Phase 3 – developing transformation rule

Phase 3 has two activities shown in Fig. 5. This phase has
two goals: (i) to create the mapping between the KDM and
PSM metamodels and (ii) to develop one transformation rule
(TR). The created TR will be responsible for transforming
the KDM instance that represents the transformation require-
ment in a PSM instance representing the same requirement.

To achieve the goals, first, the modernization engineer
needs to establish a mapping between the elements (meta-
classes and attributes) of the metamodels, registering each
equivalence in the KDM2PSM mapping artifact. Then the
modernization engineer develops the transformation rule
based on this knowledge. The activities of this phase are
shown in Fig. 5 and are described in more detail below.

Activity 3.1 – Creating KDM2PSM mapping
This activity aims at establishing the mapping between the

PSM and KDM metaclasses. Note that the instances used for
the mapping represent the same transformation requirement.
Thus the output of this activity is the artifact that represents
the mapping between the two different metaclasses.

To elaborate the mapping artifact, first, the moderniza-
tion engineer must look for all available information with the
purpose of obtaining in-depth understanding of the meta-
classes, some information sources are the metamodel docu-
mentations, rules in the stage of reverse engineering (trans-
formation from KDM to PSM), and scientific papers. The
modernization engineer must review all the information by
focusing on the metaclasses to increase his knowledge in the
metamodels.

Second, the engineer should perform a comparative anal-
ysis between the KDM instance, output of Activity 2.3, and
the target PSM instance, output of Activity 2.2. To do this,
he/she must make a list of metaclasses and attributes present
in the model instances. Then, with the documentation sup-
port, the modernization engineer must determine the seman-
tic equivalence between the metaclasses and attributes in the
list, establishing the correspondence between the elements.
To automatize the equivalence task, the engineer may use
some available tools in the literature. For example, Pérez-
Castillo et al. [20] presented an ontology-based clustering
technique to determine the similarity between the essential
concepts in a discourse.

Finally, the modernization engineer must identify the at-
tributes of the PSM instance that do not have an equivalent
element in the KDM instance and vice versa. Due to the dif-
ferent levels of abstraction, the PSM model may require more
detailed information than that provided by KDM. Likewise,
the KDM model may contain redundant information that is
not required for the PSM model. The result of this activity is
the artifact called KDM2PSM mapping, which registers the
equivalence between the KDM and PSM elements for the
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Table 2 Mapping for If-then-else structure

KDM instance JAVA model
Metaclass Attribute Metaclass

BlockUnit – Block
ActionElement kind = “if” IfStatement

kind = “infix
Expression”

InfixExpression

source code structure under analysis. This artifact is actively
queried and updated in each iteration.

Back to the If-then-else example, we compare Listing 2
that represents the KDM instance to Listing 1 that represents
the PSM instance. In line 6 of the Java model, we iden-
tify the equivalence between ActionElement metaclass with
kind=if of the KDM instance and the IfStatement metaclass
present in line 5 of the PSM instance. In line 9, we can estab-
lish the equivalence between the ActionElement metaclasses
with kind=“Infix Expression” of the KDM instance and the
InfixExpression metaclass in line 8 of the PSM instance. In
line 11 the BlockUnit metaclass of the KDM instance has its
equivalent in thenStatement with type=Block in line 12 of
the PSM instance. In line 14, similarly, the BlockUnit meta-
class of the KDM instance has its equivalent in elseStatement
metaclass with type=Blockunit present in line 15 of the PSM
instance.

As a result, Table 2 shows the equivalence between the
KDM and PSM metaclasses for the If-then-else transforma-
tion requirement.

We must keep in mind that the proposed process is iterative
and incremental. This means that, first, we need to create
basic structures and then continue with the creation of more
complex ones. For example, first, we need to create the Class
and then create the nested methods and attributes of the
Class.

Activity 3.2 – Elaborating the transformation rule
This activity aims at developing a transformation rule

responsible for transforming the structure present in KDM
instance to PSM instance, preserving the relationships em-
bodied between the elements.

To develop the rule, first, the modernization engineer
needs to develop the rule header. To do that, he/she needs
to use the KDM2PSM mapping artifact and the metamodel
documentation. Then he/she has to define the source and
the target of the transformation, as well as the conditions to
delimit the source. It is important to note that he/she must
know a transformation language syntax to perform this task.

Second, the modernization engineer has to develop the
rule body. To do that, he/she must place on the left side
each attribute of the identified PSM metaclass assigning the
equivalent KDM metaclass (on the right side), according to

Listing 3 KDM2Java Transformation rule

the KDM2PSM mapping artifact. Finally, one or many func-
tions must be implemented to complete the information that
cannot be obtained directly from the source KDM instance.
Note that because of the low-level abstraction of the PSM
model, this model needs more specific information than is
provided by the KDM instance.

Continuing with the if-then-else example, Listing 3 shows
the created KDM2Java transformation rule. In line 2, we
establish as source the ActionElement metaclasse with the
attribute kind=if. In line 3, we establish as target the IfState-
ment metaclass of the Java model. With the two first lines,
we guarantee that each instance of the ActionElement with
kind=if will have an instance of the IfStatement metaclass
in the output Java model. In line 4 the attribute Original-
CompilationUnit is filled with a function that extracts the
logical location of the Java class that contains the analyzed
IfStatement structure.

In line 5, in the Java model the Expression attribute is
assigned with the CodeElement element. According to the
Java metamodel documentation, the Expression attribute can
receive a set of element types including the Infix Expression,
and for this reason, no filter is placed in the assignment. In
line 6 the ThenStatement with Block metaclass type is as-
signed with the first CodeElement with BlockUnit metaclass
type. At last, in line 8 the elseStatement with the Block meta-
class type is assigned with the second CodeElement with
the BlockUnit metaclass type. It is important to note that in
the last two assignments, we need to put the CodeElement
elements respecting the order of appearance given that the
KDM model does not present a differentiation between the
two elements, i.e., which element belongs to then part and
which element belongs to the else part in the structure.
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3.4 Phase 4 – testing the developed rule

This phase aims at testing the developed transformation rule
and verifying the output model completeness. To achieve this
goal, the modernization engineer has to execute the created
transformation rule using some transformation tool available
in literature, such as the ATL toolkit [21]. The tool must be
configured to receive the KDM instance as input. Then the
rule is executed obtaining as output the output PSM instance.

To verify the model completeness, the output PSM is
compared with the PSM instance generated in Activity 2.2.
So modernization engineers must compare both instances
line by line looking for differences between the files. If any
difference is found, then a structure is absent, and this will
be an indicator that the transformation rule is not correctly
developed, and it will be necessary to refine it by returning to
Activity 3.2. The output of this activity is a list of differences
between the models.

3.5 Phase 5 – appending the transformation rule
and evaluating the transformation ngine

This phase aims at appending the just created transformation
rule to the set of transformation rules created in previous
iterations. Furthermore, this phase also aims at evaluating
the transformation engine to verify if all the created TRs
meet their purpose and to evaluate whether the combination
of rules results in correct transformations.

Figure 5 shows Phase 5 and its four activities. These ac-
tivities help to build the test cases for evaluating the trans-
formation engine as a whole. Activity 5.1 aims at creating
a matrix with all transformation rules to identify the depen-
dencies between them. In Activity 5.2 the rules called leaf
are identified and prioritized. In this work, a leaf rule is a rule
that does not depend on other rules, but other rules depend
on it. In Activity 5.3 the leaf rules are combined to select the
test cases. Finally, in Activity 5.4 the test cases are executed.
The activities are described with more detail below.

Activity 5.1 – Creating the dependency matrix
This activity aims at creating a dependency matrix for

identifying the dependencies between transformation rules.
To do that, it is necessary to create a matrix putting the rules in
the rows and columns. Then in the matrix the engineer must
identify the types of dependencies between the rules. The
types of dependencies in this work are mandatory, optional,
and indirect, as explained further.

• Mandatory dependency. It is a relationship between one
rule with other rules responsible for generating the basic
skeleton of the model where the new structure will be
placed. Therefore the modernization engineer selects each
rule in the row of the matrix and mark with the symbol “*”
the mandatory dependency with the rules in the columns.

Table 7 shows part of the dependency matrix; all the rules
have a mandatory dependency with the rule R01, because
this rule is responsible for generating the skeleton of the
Java model. Another example is the rule R13, in charge
of creating Fields, that has a mandatory dependency with
the rules R01, R05, and R11. These rules are responsible
for creating the PSM instance, the package, and the Class
where the Fields will be placed.

• Optional dependency. It is a relationship between one rule
with other rules responsible for creating nonbasic struc-
tures. By the term nonbasic structure we mean structures
that are created nested within the main structures of the
model. To recognize this kind of relationship, the engineer
needs to use all the code snippets developed in Activity 2.1
(Phase 2). Then, focusing on the generated structure by the
rule under analysis, he/she must identify in the code snip-
pets all the structures that nest the structure under analysis.
This kind of relationship is marked with “**”.

For example, if the rule under analysis generates the if
structure and in the codes snippets the if structure is nested
within the For, Switch, and While structures, then he/she
can mark with “**” the optional dependency between
the rule that generates the if structure and the rules that
generate the For, Switch, and While structures. We can
notice that there are many combinations of transformation
rules as source code structures to represent them. So the
more examples we use, the more relationships between the
rules will be identified.

• Indirect dependency. The indirect dependency is a rela-
tionship between one rule with other rules related to the
rule under analysis. This scenario is caused because there
are rules that need to be executed with others rules to cre-
ate a single structure. For example, the SwitchStatement
Structure needs the execution of the “Switch-Case” rule
and the “Break” rule to complete it. Therefore this type of
dependency is marked with ID-Rule, where Rule indicates
the rule under analysis.

The result of this first activity is the dependency matrix with
all the dependencies between the rules identified.

Activity 5.2 – Identifying and prioritizing leaf rules
This activity aims at identifying and prioritizing leaf rules

of the matrix elaborated in the previous activity. A leaf rule is
a rule that does not depend on no one else. Making an analogy
with a graph structure, it is a node that has no children.

Leaf rules are important to be identified because they rep-
resent a path in which these rules are the end of the path.
Therefore, when we are selecting a leaf rule, we are also
selecting all the other rules that belong to its path. The pur-
pose of using Leaf rules is ensuring that all transformation
rules are executed at least once. In other words, executing a
leaf rule implies the execution of a large set of other rules
beforehand.
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To identify the Leaf rules, the modernization engineer
must count the number of dependencies (marks) in each col-
umn in the matrix and select the rules with result equal to
zero. Then a new matrix is generated with the identified Leaf
rules, putting them as rows and keeping all the transforma-
tion rules in the columns. Then, for the prioritization part,
considering the created Leaf rule matrix, the modernization
engineer has to count the dependencies (marks) for each
row and order them by highest to lowest. The output of this
activity is the prioritized Leaf rule matrix.

Activity 5.3 – Defining test data and test cases
The goal here is selecting data to test the transformation

engine. For this work, test data are small programs containing
the source code structure that is addressed by the transforma-
tion rule (or a set of them) we want to test. For example, for
testing a transformation rule that deals with an if-then-else
structure, we must choose a piece of code that involves this
conditional structure.

Our testing strategy is to work with all the identified and
prioritized leaf rules. The execution of one prioritized leaf
rule will also result in the execution of all the rules that
depend transitively on it. Thus the combination of prioritized
rules ensures that all the developed transformation rules are
executed using the smallest number of test cases.

Therefore, when searching for source code to serve as test
cases, every program must met the following criteria:

• Containing the target code structure. The source code pro-
grams must contain the code structure that are addressed
by a leaf rule;

• Combining leaf rules when possible, the candidate source
code program must contain more than 1 code structure
with aims at testing more than one leaf rule at the same
time.

• Being an open-source program. Randomly selected open-
source programs hosted in GitHub repositories.

• Being simple but a representative program. Because it is
an incremental process, programs must contain only the
structures for which there are transformation rules. The
complexity level of the chosen program should increase as
the process continues to iterate.

After having elected the small programs that compose the
test data, we need to create the set of test cases. In this work,
each test case involves:

(i) The input, composed by one Java program Jio and one
KDM instance KDMi generated from this Java program.
Notice that this Java program serves also as the expected
result (oracle);

(ii) One leaf rule TR to be tested;
(iii) The oracle, the same Java program elected as input Jio.

Activity 5.4 – Running test cases

This activity aims at running each created test case to
evaluate the transformation engine. In general, the testing
cycle is the following:

1. Electing a test case TCi to run;
2. Running the transformation engine given as input to the

KDM instance that corresponds to the chosen program
(KDMi) and obtaining a PSM as output.

3. Generating a Java source code from the PSM by using a
code generation tool to do that (e.g., Acceleo tool);

4. Comparing the original program (which is also the oracle)
with the source code generated by the code generation
tool. If the output is equivalent to the oracle, then the
test case succeeds. Here the user can also use the tools to
compare the source code to semiautomate the task.

This cycle repeats until all the prioritized leaf rules are
covered by test cases. The execution of the test cases shows
the degree of preservation of the information expressed in
lines of code, raising indications of the quality of the transfor-
mation and, consequently, the quality of the transformation
rules that make up the created engine.

4 RUTE-K2J: a transformation engine from
KDM to Java models

In this section, we present RUTE-K2J, a transformation en-
gine for generating Java models from KDM models. The
experience of building this tool was fundamental for creat-
ing and documenting the process presented in Sect. 3.

To develop RUTE-K2J, we used the following technolo-
gies: a the ATL transformation language [21]; b) OCL
(Object Restriction Language) for data types and declara-
tive expressions; c) Eclipse Modeling Framework (EMF);
d) Modisco and the discoverers that allow the generation
of the Java Model and KDM from the source code; and e)
Modisco-Add, which includes improvements made in the
ATL rules to generate a refined KDM instance. This first
version of the RUTE-K2J is composed for 55 transformation
rules, 28 Helpers, and 10 Lazy rules. These and other arti-
facts that compose RUTE-K2J are described in what follows.

i) The KDM-PSM mapping artifact. This artifact shows
the mapping between the metaclasses of KDM and Java
model. This mapping guides the development of the transfor-
mation rules, because it describes the input KDM metaclass
and the equivalent Java metaclass. Table 3 shows part of
KDM-PSM mapping artifact. The first and second columns
refer to the KDM metaclass and the condition used as filter,
and the third column refers to the equivalent Java meta-
class. In Table 3, we can realize that the Action Element
KDM metaclass can be transformed into several Java meta-
classes (IfStatement, InfixExpression, SwitchStatement, etc.).
For this reason, we must use as a condition the Kind attribute
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Table 3 Partial KDM2Java
model mapping KDM instance JAVA model

Metaclass Filter Metaclass

CodeModel name=’Nome_projeto’ Model
CodeModel name=’External’
Package – Package
ClassUnit name <> ‘Anonymous type’ ClassDeclaration

name = ‘Anonymous type’ AnonymousClassDeclaration
MethodUnit kind = constructor ConstructorDeclaration

kind = method MethodDeclaration
StorableUnit kind <> local FieldDeclaration

kind=local VariableDeclarationFragment
BlockUnit – Block
ActionElement kind = ‘if’ IfStatement

kind =’infix expression’ InfixExpression
kind=’postfix expression’ PostfixExpression
kind=’switch’ SwitchStatement
kind=’while’ WhileStatement
kind=’method invocation’ MethodInvocation
kind=’class instance creation’ ClassInstanceCreation
kind=’return’ ReturnStatement

of the KDM metaclass. KDM presents many elements where
the only distinction between them is the value of the kind at-
tribute.

ii) The KDM2JAVA Transformation Rules Inventory. This
artifact shows the inventory of 55 ATL transformation rules.
The set of rules composes the core of the RUTE-K2J tool and
allows the transformation of KDM instances to Java models.
Table 4 shows part of the KDM2JAVA Transformation Rules
inventory artifact. We can observe that the rule name makes
reference to the origin and destination metaclass of the trans-
formation. For example, the rule CodeModelToJavaModel
has a goal to transform the CodeModel metaclass to the Java
model metaclass. This rule is the principal for structuring the
model and to articulate the other rules.

iii) The ATL Helper Inventory. In the ATL context the
helpers can be viewed as functions when compared with
traditional programming. The helpers allow us to factorize
code out and develop a clean code. They can be called by rules
or by other helpers from different points of the ATL code. For
this work, we developed 28 ATL helpers. Table 5 shows part
of the Helper inventory. In Table 5, we can observe the Helper
getOrphanTypes, which allows us to obtain a sequence of
datatypes elements present in the source Model.

iv) The Lazy Rules Inventory. In our project the lazy rules
are used in the characterization of element collections; it
must be explicitly invoked by the transformation rule. For
this work, we developed 10 ATL lazy rules. Table 6 shows
part of the lazy rules inventory. In the table, we can see, for

instance, setOrphanTypes lazy rule that helps to assign values
for each attribute returned by the getOrphanTypes Helper.

The complete RUTE_K2J artifacts1 are complete and
available for review or extension.

5 RUTE-K2J evaluation

In this section, we present an evaluation of RUTE-K2J ac-
cording to the Phase 5 of our approach (Sect. 3.5). The goal
was to check the correctness of the set of transformation
rules and whether the combination of them results in correct
transformations, i.e., whether they are correctly transforming
KDM model elements into Java model elements.

5.1 Scoping

We employ the GQM (Goal–Question–Metrics) [22] tem-
plate to define the scope of this evaluation. Therefore the
scope of our study can be summarized as follows:

Analyze all the transformation rules of RUTE-K2J
for the purpose of evaluation,
with respect of the correctness of generated model ele-

ments,
from the point of view of software engineers conducting

modernization projects, and
in the academic context.

1 https://github.com/Advanse-Lab/RUTE-K2J/tree/master/
Artefactos%20RUTE_K2J.
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Table 4 Partial transformation
rules No Rule name and purpose

1 CodeModelToJavaModel:
Main rule for structuring the Java model from the KDM instance

2 PackageToJavaPackage:
Transform the Package metaclass of the KDM to Package metaclasses of the Java
metamodel

3 ClassUnitToClassDeclaration:
Transform the ClassUni metaclass of the KDM to the ClassDeclaration metaclass
of the Java metamodel

4 ActionElementToInfixExpression:
Transform the ActionElement metaclass of the infix expression type of the KDM
instance to the InfixExpression metaclass of the Java model

5 ActionElementToIfStatement:
Transform the ActionElement metaclass of the prefix expression type of the KDM
instance to the PrefixExpression metaclass of the Java model

6 ActionElementToForStatement:
Transform the ActionElement metaclass of type for from the KDM instance to the
ForStatement metaclass of the Java Model

Table 5 Partial helpers
No Helper name and purpose

1 getOrphanTypes: Helper that returns a sequence of datatypes elements
2 getCompilationUnit: Helper that returns the inventory of the physical artifacts of

the system
3 getParametersMethod: Helper to get the parameter sequence of the method
4 getReturns: Helper to get the sequence of return elements of the method
5 checkElementoExternal: Helper recursive to verify if the element belongs to the

External Model in the KDM instance in order to put the attribute ‘proxy = true’ in
the Java model

Table 6 Partial lazy rules
No Lazy rule name and purpose

1 setOrphanTypes: Defines the attributes of the orphanTypes metaclass of the Java
model

2 setCompilationUnit: Defines the attributes of the CompilationUnit metaclass of
the Java model

3 SetParametros: Defines the parameters attributes of the method in the Java model
4 SetTypeParametrosRetorno: Defines the data type of the return parameter of the

method

5.2 Conducting the evaluation

The evaluation we have conducted followed the four activities
shown in Sect. 3.5:

• 1 Creating the dependency matrix
As previously commented, the dependency matrix aims

at supporting the identification of the dependencies among
the existing rules. This matrix helps in the identification of
paths of transformation rules to be executed.

Part of the dependency matrix can be seen in Ta-
ble 7, as well as some dependencies. For instance, Rule
R30 has mandatory dependencies with R01-JavaModel,
R05-JavaPackage, R11-ClassDeclaration, R15-Method
Declaration, and R16-BlockUnit. These rules are respon-
sible for the creation of the Java model structure.

Moreover, R30 also has an optional dependency
with R14-Constructor, R18-ReturnStatement, or R21-
SwitchStatement. Finally, R30 has indirect dependencies
with R22-BreakStatement and R23-SwitchCase marked
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Table 7 Dependency matrix

Rule R01 R05 R11 R14 R15 R16 R18 R20 R21 R22 R23 . . .

R131 * * * – – – – – – – – . . .
R292 * * * ** * * – – – – – . . .
R303 * * * ** * * ** – ** ID-R21 ID-R21 . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total 51 47 42 34 38 38 5 4 8 7 7 . . .

1TrasformStorableUnitToFieldDeclaration
2TransformWritesToSingleVariableAccess
3TransformReadsToSingleVariableAccess

Table 8 Leaf rule prioritization

Rule R01 R05 R11 R14 R15 R16 R18 R20 R21 R22 R23 . . . O

R471 * * * ** * * ID-R23 ID-R23 ** . . . 25
R302 * * * ** * * ** ** ID-R21 ID-R21 . . . 22
R483 * * * ** * * ID-R23 ID-R23 ** . . . 22
R504 * * * ** * * ** ** ID-R23 ID-R23 ** . . . 22
R495 * * * ** * * ID-R23 ID-R23 ** . . . 20
R316 * * * ** * * . . . 15
R517 * * * ** * * . . . 11
R528 * * * ** * * . . . 10
R469 * * * * * . . . 7
R1010 * * * * . . . 6
R1311 * * ** . . . 6

1TransformValueToNumberLiteral
2TransformReadsToSingleVariableAccess
3TransformValueToStringLiteral
4TransformValueToBooleanLiteral
5TransformValueToCharacterLiteral
6TransformateAddressesSingleVariableAccess
7TransformActionElementToNullLiteral
8TransformActionElementToThisExpression
9TransformActionElementToSuperMethodInvocation
10TransformInterfaceUnitToAnnotationTypeDeclaration
11TrasformStorableUnitToFieldDeclaration

with ID-R21. This means that if R30 depends on R21,
then it would indirectly depend on the execution of R22
and R23. R21, R22, and R23 together compose the Swith-
Statement structure.

The complete dependency matrix2 is complete and
available for review or extension.

• 2 Identifying and prioritizing leaf rules

2 https://github.com/Advanse-Lab/RUTE-K2J/tree/master/
Test%20Data.

This activity focuses on the identification of the leaf
rules. As previously commented, leaf rules help in the
execution of many other rules that belong to the path this
leaf rule belongs to. For our evaluation, we identified 11
leaf rules. Table 8 shows the prioritized leaf rules, which
are listed in the first column of the table. It is possible to
see in the last column that the execution of the rule R47
leads to the execution of 25 transformation rules (in the
best case) including R01, R05, and R11, among others.
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Table 9 Test cases X leaf rules

Test Cases R47 R30 R48 R50 R49 R31 R51 R52 R46 R10 R13 C P%

I 10 7 2 19 36.54
II 3 5 8 15.38
III 2 3 2 7 13.46
IV 2 2 1 5 9.62
V 2 2 4 7.69
VI 5 5 9.62
VII 3 1 4 7.69

• 3 Defining test data and test cases
In this activity, we need to select a set of small programs

to serve as our test data. This selection was guided by the
eleven leaf rules that prioritized in the previous activity
(Table 8). Therefore we selected, in most of the cases, one
program per a combination of leaf rules. As a result, we
ended up with seven test cases following the definition we
have presented in Activity 5.3 of Sect. 3.5.

Table 9 shows the relationship between test cases, leaf
rules, and the total number of rules executed by the test
case. For example, test case I executes part of the leaf rule
R47, i.e., 10 rules from the set of rules that depend on this
leaf rule. Also, it executes part of R30 (7 rules) and R51
(2 rules). This means that this test case executes 19 rules
(36.54%) out of the 52 available.

Note that the test cases execute the same set of manda-
tory rules to conform the software program skeleton, as
well as they can execute already exercised structures. In
that context, we count the executed rules only once. For
example, test case VII executes only four new rules.

The complete test data3 are available for review or ex-
tension.

• 4 Executing test cases
The execution of the test cases followed the testing cy-

cle we have defined previously. Therefore we have gener-
ated the KDM instance for each program. After that, we
executed the transformation engine RUTE-K2J having as
input each KDM instance and obtaining as output the Java
model (XMI File). Next, with the aim of verifying the
completeness of the model, we used the Acceleo plug-in
to generate Java source code from the Output Java model.
Finally, the free tool Pretty Diff helped us to compare the
original Java code and the Java code generated by Acceleo.
The result of this comparison is expressed in differences
in lines of code between the programs.

3 https://github.com/Advanse-Lab/RUTE-K2J/tree/master/
Test%20Data.

5.3 Evaluation results

Table 10 shows the seven test cases. The first column shows
the identifier of the test cases, and the second one shows the
name of the Java class. The third and fourth columns show
the LOC (lines of code) of the program and the LOC-D (lines
of code – differences) after the generation, respectively.

The fifth and sixth ones show the original and generated
lines of the code with differences. Note that the detailed
lines of code correspond to the quantity indicated in the
fourth column (LOC-D). The goal of these two columns is to
exhibit the errors in the generation of the source code, which
allows us to correct them. The last column summarizes the
kind of mistakes found.

As result of the test cases execution, considering the 217
lines of the code of the all chosen programs, 201 lines were
generated correctly, and 16 lines presented differences, i.e.,
92% of the code was generated successfully. The lines of the
code generated with differences are discussed next.

• For all test cases, the reserved word Static is not being
generated. Keeping track of the data preservation during
the transformations, we found out that these data are not
brought by the input KDM instance.

• Test case I. The error is related to the order of the elements
in the conditional part of the if structure. The KDM model
does not have an indication of the correct position of the
elements in the structures.

• Test case III. The System.in parameter is absent in the
creation of the Scanner class. This is due to the lack of
information in the KDM model.

• Test case V. An unnecessary parenthesis is being generated
(i.e. “()”). We realized that this error is displayed when an
anonymous class structure is present in the source code.
This is a bug in the transformation rule when working in
conjunction with other rules.

• Test case VI. When creating a Array [] structure, the “[]”
element is absent. By tracking the data during generation
we found that the KDM input model does not have this
information.
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Table 10 Rute-K2J evaluation

No File name LOC LOC-D Original Source Code Generated Source Code Comparison Result

I ControlFlow-
Statements

61 4 public static int
getMonthNumber

public int
getMonthNumber

Reserved word Static is
absent

public static void
main(. . .

public void main(. . . Reserved word Static is
absent

if (month == null) if (null == month) Wrong order of the
elements

if
(returnedMonthNumber
== 0)

if (0 ==

returnedMonthNumber)
Wrong order of the
elements

II TestArray 20 1 public static void
main(. . .

public void main(. . . Reserved word Static is
absent

III GetAge 21 2 public static void
main(. . .

public void main(. . . Reserved word Static is
absent

sc = new
Scanner(System.in)

sc = new Scanner(); Parameter is absent

IV TestBikes 11 1 public static void
main(. . .

public void main(. . . Reserved word Static is
absent

MountainBike 20 0 – – –
Bicycle 28 0 – – –

V AnonymousDemo 13 2 public static void
main(. . .

public void main(. . . Reserved word Static is
absent

} }(); Unnecessary parentheses

Age 6 0 – – –

VI ArrayListToArray 18 2 public static void
main(. . .

public void main(. . . Reserved word Static is
absent

String array[] = new . . . String array = new . . . Missing brackets in array
criation.

VII Test 19 4 //Java program to . . . – Missing comment

public static void
main(. . .

public void main(. . . Reserved word Static is
absent

b = (byte)(b * 2); b = (byte)(2 * b); Wrong order of the
elements

println(“Prefix = ” +

++i);
println(“Prefix = ”
+++i);

Missing space

Total 217 16
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• Test case VII. There is a missing comment in the transfor-
mation output. Currently, there is no transformation rule
that generates comments. Then in the multiplication state-
ment (2 * b) the order of the elements is wrong; it is the
same problem already reported in the Test case I. Finally,
in the expression “+++ i”, it can observe a lack of sepa-
ration between the “+” with “++i”. We identified that the
problem comes in the code generation and the use of the
Acceleo Tool.

As result of the evaluation, 92% of the code was suc-
cessfully generated. This shows that RUTE-K2J generates a
Java model that preserves the information embodied in the
source code. We recognize that the current results can lead
to semantic and syntactic problems if not corrected, so this
evaluation will help us to carry out two types of important
corrections: (i) internal, which means the correction of the
transformation rules that make up the transformation engine,
and (ii) external, in relation to the tools we use to gener-
ate the KDM model from the source code and the tool to
generate the source from the model; these are the Modisco
and Aceleo tools, respectively. The Modisco project makes
publicly available the transformation rules used to generate
the KDM model. So to refine the model for our purposes, we
can correct the rules that generate the structures with errors
identified in the evaluation. In that regard, we have already
identified and corrected errors in their transformation rules
during the development of this project, which were accepted
by the Eclipse team.

5.4 Threats to validity

In this section, we describe some internal and external threats
that can impact on the results of our evaluation.

Internal validity. All the combinations among rules were
not exercised. All the combinations we have created were
based on the dependency matrix. Therefore we created com-
binations that we consider the most used by developers and
those that involve basic structures. We believe that having
guaranteed the correctness for basic structures, more ad-
vanced ones can be conducted later.

The manual mapping among models. One of the main
steps of our approach is mapping the KDM against a PSM.
Currently, this is done manually, letting this process too much
depend on the skills and experience of the engineer. So this
also impacts on the quality of the generated rules and clearly
on the final results.

External validity. The small number of source code ex-
amples we employed. Although we have used 10 examples
of source code, which can be considered a small number, we
concentrate on getting the most used source code structures,
which are largely employed by developers. More advanced
structures need to be investigated in future work.

The employment of Modisco-Add and Acceleo tools.
Modisco-Add aims at generating a complete KDM instance.
As we said before, this tool includes corrections of some bugs
found in the ATL rules of Modisco. Although the tool in-
cludes the improvements developed, it still does not generate
a complete KDM instance. Regarding Acceleo, we employed
it for the phase of source code generation from PSM Model
(Java model); also, it was employed in the evaluation section
of the RUTE-K2J tool. By using Acceleo we were able to no-
tice that some elements in the model were not transformed.
So, in future works, we must consider other alternatives of
source generation tools.

6 Discussion

During the process of construction of RUTE-K2J, we faced
some difficulties:

Abstraction level. Due to the lower level of abstraction
of the target Java model, there are metaclasses that need
more information than the one provided by KDM instances.
For example, the CompilationUnit (Java metaclass) has the
attributes name, originalFilePath, types, and imports. On
the other hand, the metaclass KDM equivalent, the Invento-
ryItem metaclass, only has the attribute name and original-
FilePath. The generation of a complete model is important
to avoid the loss of information along the process. Thus we
had to deal with the abstraction level problems.

Order of elements. KDM has metaclasses with attributes
that do not have an explicit assignment order. For exam-
ple, the ActionElement metaclass has many codeElements
attributes with no label indicating the assignment order.
On the other hand, in the Java model the metaclasses present
attributes with explicit names that indicate the right assign-
ment order. For example, the RightOperand and leftOperand
attributes of the InfixExpression metaclass. Therefore, for the
KDM model, we deduce that the order of the elements in the
model agrees with the order of appearance.

External model. The KDM has a model called External
that stores the references of the external classes (imported
classes). In addition, this model stores the initial values of the
local variables declared in the method body. The combination
of these different elements in the external model makes it
difficult to (i) retrieve the assigned value to the variable and
(ii) recognize and transform each different element in the
External model.

Enumeration data type. One of the main problems faced
with KDM is that the metamodel stores constant values in
string attributes, which must be stored in data type enumera-
tion. This characteristic makes it difficult to identify all values
in advance. For example, the ActionElement metaclasses has
a string attribute called Kind that stores the following values:
For, If, Switch, etc. We were not able to identify those values

Springer



G. Angulo et al.

beforehand; only they were identified during the mapping
performed.

Control flow structure For. The KDM model uses the
ActionElement metaclass with type equal Variable Declara-
tion for the declaration of local variables and for the vari-
able initialization of the For control structure. On the other
hand, the Java model uses the “VariableDeclarationState-
ment” for local variables and “VariableDeclarationExpres-
sion” for variable initialization in the For structure. That is,
a KDM metaclass (Variable Declaration) can turn in two
different JAVA metaclasses (VariableDeclarationStatement
and VariableDeclarationExpression). The difficulty here is
that KDM metaclass (Variable Declaration) does not have
any other characteristic that helps in the differentiation for the
election of one metaclass or another. For this case, the imple-
mentation of a helper ATL that returns the container type of
the variable helped us to choose the correct metaclass during
the development of the transformation rules.

Switch control flow structure. In the KDM model the
Switch structure does not present differentiation between the
Case and Default Case element, i.e., the Default Case does
not present any reserved word or some type or kind that
identifies it as the default value of the structure. In this case,
we have to deduce that the last case element without internal
instructions is the Default Case element.

7 Related work

Most related works shown here focus on highlighting some
parts of the entire modernization process. Thus we present
some works that present transformations from the KDM
model to other metamodels. However, several details of the
transformations or the process for elaborating the rules are
not clear.

Pérez-Castillo et al. [23] proposed a modernization pro-
cess called the Data Contextualization technique that takes
as an input a legacy system with embedded SQL queries and
generates as an output a model with the database schema. In
the first step, several SQL queries embedded in the source
code written in Java programming language are represented
in an extended KDM instance for supporting SQL artifacts,
such as database model and SQL schemes. A static analysis
is performed in the KDM instance to recognize SQL queries
and generate an SQL statement model, which is an instance
of SQL-92 metamodel. Finally, several QVT rules generate
the output of the process because they transform the SQL
statement model into a Database schema model.

The authors propose an entire modernization cycle using
for the process an extension of the KDM model. In this
work, it is not clear how the transformations between the
KDM model and the other metamodels are done.

Rodríguez-Echeverría et al. [9] proposed an outline frame-
work for the systematic process for Web Applications (WA)
to Rich Internet Application (RIA) modernization. The mod-
ernization process follows the ADM approach, and it is com-
posed of five phases: (i) information extraction; (ii) the infor-
mation extracted is stored in a KDM instance and refined with
dynamic information; (iii) model refinement to RIA patterns,
the KDM instance is improvement by finding expressions of
RIA characteristics; (iv) model transformation, the KDM in-
stance is now refined into an RIA-extended Model-Driven
Web Engineering (MDWE); and, finally, (v) converting the
model instance in an executable web application.

As this approach is a proposal, neither the transformation
is implemented, nor the strategy is deeply discussed. The
authors argue that the possible solutions would be to reuse
some existing techniques and tools, so the whole approach
does not propose a methodology to the M2M transformation.

Trias et al. [10] proposed ADMigraCMS that defines
guidelines to migrate CMS-based (CSM – Content Man-
agement Systems) Web applications to other CMS platforms
supported by a toolkit. It is composed of three reengineering
stages defined in the ADM horseshoe cycle and structured in
four different modeling levels. The ADMigraCMS tool trans-
forms automatically the transition between the levels, i.e.,
from PHP code-to-PHP_Model(L0), from PHP_model(L0)-
to-ASTM_Model (L1), from ASTM_Model (L1)-to-KDM
(L2), and from KDM (L2)-To-CMS(L3), and the inverse
transformations in the forward engineering stage.

The ADMigraCMS tool has a complete level of automa-
tion and completes the entire Modernization cycle for PHP-
implemented CMSs. Although the author has shown the
mapping between the elements of different abstraction levels,
it is not clear how the development of the transformation rules
were performed because the implementation is not present.

Pérez-Castillo et al. [24] proposed a declarative model
transformation to transform KDM instances into BPMN
models. The first step was to identify specific structures of
metaclasses in the KDM instances and establish other spe-
cific structures of business metaclasses in output models.
The patterns are built by taking into account business pat-
terns that are usually used by business experts for modeling
business processes. The patterns also add those structures of
source code elements (defined through KDM elements) that
originate the specific business structures in BPMN models.
The second step was to implement the model transformations
by means of QVT-relation declarative language.

The authors do not detail how the process to create the
patterns was and if their approach can be reused for other
types of transformation. They paid more attention to the
QVT-r code that shows the implementation of the patterns.

Pérez-Castillo et al. [25] proposed a method for extracting
Enterprise Architect (EA) models, represented using Archi-
Mate, from KDM models. ArchiMate metamodel allows the
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representation of EA from different viewpoints, considering
layers and aspects as the two main dimensions.The proposed
approach considers the extraction of KDM model from the
source code and the transformation between the KDM model
to ArchiMate Model.

The authors describe the main rules to transform the KDM
model to ArchiMate Model, showing part of the ATL code.
The proposal is located in the Reverse Engineering part,
increasing the abstraction level in each step. On the other
hand, our work focuses on Forward Engineering, reducing
the abstraction level in our transformations to obtain the PSM
model from the KDM model.

8 Conclusion

In this paper, we presented a process for creating transforma-
tion engines able to transform KDM into any other PSM. The
process aims at assisting modernization engineers to com-
plete the forward engineering stage of the ADM horseshoe
model.

Our process is characterized by three main features: (i) it
uses an iterative and incremental process to develop the for-
ward transformation rules; (ii) it relies on analysis and com-
parison of PSM instances as the main source of knowledge
to develop the rules; (iii) it uses the Mapping as the main
artifact, which registers the mapping between the KDM and
PSM metamodel elements.

The generic process to create KDM2PSM transformation
engines guided the construction of the RUTE-K2J transfor-
mation engine. The engine is composed of 55 transformation
rules, 28 helpers, and 10 lazy rules developed with ATL and
provides an instrument to transform the KDM instance to
Java model. All the artifacts are complete and available4 for
review or extension.

To demonstrate the correctness of our tool, we elaborated
seven test cases that were the result of a detailed and manual
evaluation process with aims at executing each transforma-
tion rule at least once in a source code program. Our evalua-
tion showed that 92% of the source code was preserved and
the information lost is mainly because the KDM instance
used as input did not conserve the complete information
along the modernization process.

In the future, we plan to automate the proposed process
by building a support tool to make the mappings between
the different metamodels and support in the semiautomatic
generation of the transformation rules. In addition, we plan
to improve the reverse PSM2KDM transformation engine
offered by the Modisco tool to guarantee a complete KDM
instance with all the necessary information for use in our
process.

4 https://github.com/Advanse-Lab/RUTE-K2J.
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