
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2023.0322000

Exploring a Self-replication Algorithm to Flexibly
Match Patterns
PAUL LEGER1, HIROAKI FUKUDA2, NICOLÁS CARDOZO3, and DANIEL SAN MARTIN1
1Escuela de Ingeniería, Universidad Católica del Norte, Chile (e-mail: pleger@ucn.cl)
2Shibaura Institute of Technology, Japan (e-mail: hiroaki@shibaura-it.ac.jp)
3Systems and Computing Engineering Department, Universidad de los Andes, Colombia (e-mail: n.cardozo@uniandes.edu.co)

Corresponding author: Paul Leger (e-mail: pleger@ucn.cl).

ABSTRACT
Pattern matching algorithms have been studied on numerous occasions, mainly focusing on performance
because of the large amount of data used in a matching process. However, a strong focus on performance
can entail particular issues like the lack of flexibility to match patterns. As a consequence, programming
developers need to tweak matching algorithms in contortive ways or create new specialized ones altogether if
their specific needs are not supported. Inspired by the self-replication behavior of cells in biology, we explore
and evaluate the design and implementation of an algorithm to flexibly match patterns, namedMatcher Cells.
Through the composition of simple rules applied to cells, developers can adjust the matching semantics of
this algorithm to different needs. We describe this algorithm using a pure functional language as a recipe
for any Turing-complete programming language and then offer an object-oriented architecture for languages
like Java. To show the flexibility of our proposal, we use a concrete implementation in TypeScript to describe
two applications, from different domains, that use pattern matching in a stream of tokens. Additionally, we
carry out performance and developer experience empirical evaluations with undergraduate students using
Matcher Cells. Finally, we discuss the pros and cons of using a biological-based algorithm, exploiting the
compositions of rules, to match patterns.

INDEX TERMS Pattern matching, self-replication algorithms, string matching, context-aware systems

I. INTRODUCTION

PAttern matching algorithms [1] check the occurrences
of a pattern in a sequence of tokens. Such patterns are

usually expressed using abstractions (e.g., automata [2]), or
languages (e.g., regular expressions [3]). Although these al-
gorithms have undergone extensive historical study, they con-
tinue to be a focal point of attention in contemporary times.
This interest is attributed to their wide-ranging applications
across several domains, including but not limited to spam fil-
ters, digital libraries, natural language processing, word pro-
cessors, web search engines, parsers, computational molecu-
lar biology, and screen scrapers [4], [5]. A common character-
istic among these applications is the abundant availability of
large datasets that require filtration, extraction, and process-
ing to uncover valuable data for researchers and practitioners.
Thus, pattern-matching techniques should demonstrate their
efficiency by identifying one or more patterns within datasets
in a relatively short timeframe [5]. They should also possess
the necessary flexibility and user-friendliness to accommo-
date pattern matching without requiring developers to possess

an in-depth understanding of pattern matching algorithms or
the need to fine-tune existing algorithms to meet their specific
requirements [6].

One specific context that exemplifies the needs for flexible
and extensible pattern matching algorithms is web scraping,
which involves the practice of retrieving content from web-
sites to store in repositories like databases or CSV files [7],
[8]. Within the sphere of web scraping, a diverse array of
pattern matching techniques are employed, including reg-
ular expressions (Regex), HTML Document Object Model
(DOM), and XPATH. Nonetheless, these methodologies have
been perceived as not so flexibility, and complex in terms of
implementation, and dependence on the structure of the data
source [9]. For instance, websites often employ similar yet
inconsistent templates for creating pages of the same cate-
gory. Therefore, over time, the inner structure of a webpage
can change without prior notification due to periodic updates
in the layout, which may imply rewriting the matcher pattern
algorithm to get the desired data. Consequently, these changes
could impact the time, effort, and cost associated with web

VOLUME 11, 2023 1

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

Conceptual design
(functional

programming)

Concrete implementation
(Object-Oriented Programming)

Context-Aware System

Twitter Analyzer

Context-Aware System

Twitter Analyzer

Developer Experience

Performance

Abstractions and
Expressivenes

Validations

Evaluations

Motivation:
Flexibility to match

patterns

FIGURE 1. Methodology used in this study.

scraping and data extraction tasks [9]. A web scraping tool,
which considers an approximate or flexible pattern matching
algorithm, can help address the issue related to the website
evolution.

In this paper, we present an algorithm founded on the
principles of Biologically Inspired Computing (BIC) [10],
which provides researchers with the basis to create flex-
ible algorithms for pattern matching. This algorithm cen-
ters around a self-replication algorithm called Matcher Cells,
which takes inspiration from the self-replicating behavior
of biological cells to articulate a broad spectrum of match-
ing semantics [11]. This work extends an initial proposal
of Matcher Cells [12], where it was mainly employed for
matching program execution traces in the context of aspect-
oriented programming [13]. It is worth noting that, to the
best of our knowledge, the application of BIC concepts in the
realm of pattern matching remains relatively unexplored.

This paper extends our work in the following aspects:

1) Amature description ofMatcher Cells using the Scheme
programming language [14] to provide a generic im-
plementation of our proposal that works on Turing-
complete programming languages. We selected Scheme
as a functional language that provides few and simple
constructs to formally describe, as much as possible, a
generic implementation.

2) An architecture to realize Matcher Cells in object-
oriented languages like Java.We exemplify this architec-
ture with a concrete implementation in TypeScript [15]
for NodeJS (v16) [16], available at: https://github.com/
pragmaticslaboratory/match-cell-base (rev. e4c556d).

3) Two case studies validating Matcher Cells. First, a pat-
tern matching tool to analyze streaming services as
social network sites (e.g., Twitter [17]). Second, a
context-aware system [18] that adapts the difficulty
of addition exercises tasked to students, according to
their performance (i.e., context). Both case studies
are available at: https://pragmaticslaboratory.github.io/
matcher-cells-study-cases [19].

4) An experience evaluation of our proposal incorporating
23 undergraduate students from Universidad Católica

del Norte (Chile). The usability of Matcher Cells is
evaluated using the System Usability Scale (SUS) [20]
approach.

5) A preliminary performance evaluation with a compar-
ison to other two pattern matching algorithms, brute-
force and KMP.

6) A discussion about the trade-off between programming
abstractions and expressiveness of Matcher Cells.

7) A deep reference frame that contains proposals related
to Matcher Cells, that is flexible-pattern matching algo-
rithms.

Roadmap. Fig. 1 shows the methodology followed in this
article. Section II presents two flexibility issues in pat-
tern matching algorithms with their consequences, focused
mainly on performance. After the motivation, Section III
presents Matcher Cells, our self-replication algorithm to flex-
ibly match patterns through a conceptual design. The design
is followed by a concrete implementation of Matcher Cells
in TypeScript, named MCJs. Section IV validates our im-
plementation with two applications: a Twitter analyzer and
a context identifier for context-aware systems. Additionally,
we present our user experience evaluation from three perspec-
tives: (1) developer experience, (2) performance, and (3) ab-
stractions and expressiveness. Finally, the paper discusses
different algorithms for pattern matching in perspective of
our proposal in Section VI, leading to Section VII with the
conclusion and avenues of future work.

II. FLEXIBILITY IN PATTERN MATCHING
With a large number of pattern matching algorithms available
in the body of literature [21], pattern matching is currently
used in several fields such as string matching [1], execution
trace matching in aspect-oriented programming [22], and
intrusion detection [23]. However, asmost of these algorithms
mainly focus on their performance or algorithmic complexity,
some issues can appear when more flexibility is needed. We
now present existing pattern matching algorithms, followed
by the issues detected in existing approaches.

2 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

TABLE 1. Description of pattern matching algorithms.

Complexity
Algorithm Preprocessing Matching Usage scenarios

Naïve (Brute-force) - O((n− m+ 1)m) Small patterns and search spaces
Rabin-Karp [24] Θ(m) O((n− m+ 1)m) Multiple matches over large search spaces, image matching

Knuth-Morris-Pratt [1] Θ(m) Θ(n) DNA sequence analysis, data compression
Boyer-Moore [25] Θ(m) O(mn) Text editors, command substitution, intrusion detection

BNDM [26] O(m(1 +
|Σ|
ω

)) O(nm
2

ω
) DNA Sequence matching

BOM [27] - O(mn) DNA Sequence matching
Suffix tree [28] O(n) O(m) String search in bioinformatics, data compression, and data clustering
Suffix array [29] O(n) O(m log(n) + km) Data compression, find all matches of a pattern, find longest repeated words

Suffix automaton [30] O(M3|Σ|) O(m2) String search, counting different strings
Aho-Corasick [31] O(n) O(n+ l + z) String search, find shortest strings
Bit-parallelism [32] - O(nm

ω
) Multiple matches, approximate matches

A. MATCHING ALGORITHMS AND RESTRICTIONS
There are eleven main algorithms describing the families of
pattern matching algorithms, as described in TABLE II-A.
For the evaluation of the algorithms, we assume a data set
of n tokens and a pattern of m tokens. Naïve or brute-force
algorithms enumerate all possible matchings of a pattern by
checking the satisfiability of each potential matching of the
pattern in the complete dataset. This algorithm implies com-
paring the pattern with every data point, leading to a worst-
case performance (i.e., time complexity) of O(n ∗ m). Brute-
force algorithms have proven useful when matching over
small datasets, due to their simplicity. However, the algorithm
looses efficiency whenever the matching string has too many
prefixes to match the pattern (e.g., pattern p = “ddde” to
match string s = “ddddddddddddde”).
The Rabin-Karp algorithm [24] offers an optimization over

the naïve approach, and a general framework for other string
matching algorithms by preprocessing the pattern string. The
algorithm uses modulo equivalences and rolling hashes to
process the string, taking the module of the pattern elements,
and the search string taking windows of size m, with a time
complexity ofΘ(m). Given this, the complexity of the match-
ing algorithm reduces the complexity toΘ(n−m+1). Given
the use of hashed data, the Rabin-Karp algorithm is applicable
for situations where there might be many matches in the
string, processing them faster. Additionally, the algorithm is
used to match bitmap objects (e.g., images) easier.
The Knuth-Morris-Pratt (KMP) algorithm [1] uses se-

quences of pre-processed tokens. The matching time com-
plexity of KMP is O(n) in its best case time complexity. At
first glance, KMP shows a much better performance than
brute-force algorithms, however, KMP’s performance can
degrade to O(n + m) if a sequence of tokens does not allow
KMP to appropriately reuse information of previous partial
matchings of the patterns. For example, consider a pattern
p = “aaa” and a sequence s = “aabaab”; here, the matching
fails every time the pattern is about to match, i.e., when a
“b” is found. KMP is useful for matching large data sets, like
DNA sequence analysis or image processing (i.e., its parallel
version) with a better performance than naïve or Rabin-Karp.

The Boyer-Moore (BM) algorithm [25] flips the algorithm

to match from the tail-end of the pattern. The algorithm uses
a bad match heuristic to move forward in the search of the
pattern, skipping over the characters before the bad match,
until the first match in the pattern with the bad character. The
time complexity of the algorithm is O(n ∗ m) in the worst
case, given its dependence on the token sequence. The BM
algorithm is used for text editors, command substitution, or
intrusion detection.
BNDM (Backward Non-deterministic DAWG Match-

ing) [26] is a bit-parallel algorithm based on suffix automata,
extending BDM for faster execution. The algorithm uses
a table to store bitmasks, a sequence of bits to keep/clear
bits from another sequence, for each token to search. The
algorithm shifts the search window according to the word
size (ω), detecting matches whenever the last word bit is 1.
The time complexity of the algorithm is O(n∗m

2

ω) for general
patterns, but can be O(n ∗m) (as in BDM) if the pattern used
is smaller than the word size. BNDM is applicable in general
matching scenarios but most efficient for searching patterns
smaller than the memory word size.
The BOM (Backward Oracle Matching) algorithm [27]

expands on the Boyer-Moore suffix matching by matching
prefixes (i.e., using a suffix oracle on the reverse pattern).
As a consequence, BOM optimizes search window shifts,
obtaining a better performance. On average, the performance
of BOM is O(n ∗ log|Σ|(m)/m), but degrades to O(m ∗ n) in
the worst case. BOM is used for DNA sequence matching and
general string matching.
So far, the described algorithms have gained linear

speedups proportional to the size of the data, i.e., O(n).
In order to improve such execution time, it is possible to
preprocess the data. Suffix data structures are used for such
a purpose, keeping track of suffixes from the data set. Suf-
fix trees [28] use common sequences in edges going down
the tree. Tree leaves then contain the index in which the
suffix, going down to that leave, starts in the data set. The
processing of the suffix tree takes O(n) time, as it requires
going through the complete data set. However, once built,
it is possible to directly match any possible pattern in O(m)
time. Given this property, suffix trees are of special interest for
matching problems, as for example the case of DNA sequence

VOLUME 11, 2023 3

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

search. Similar to Suffix trees, Suffix arrays [29] propose an
alternative of matching algorithms that compromise search
time performance to increase flexibility of matching patterns.
Finding all k matches on a dataset takesO(m∗ log(n)+k ∗m)
time, with an additional best-time of O(n) to build the array.
Suffix arrays are built by extracting all possible suffixes of
the dataset, keeping their start index, and then sorting said
array. Suffix automata [30], [33], similar to the previous two
cases, are used to pre-process the dataset to search patterns.
The difference between the automaton and the array and tree
structures lies in the memory used for its construction, suffix
automata presenting an optimization on the space used.

The Aho-Corasick algorithm [31], [34] builds a finite
state machine with additional links between internal nodes
to speedup transitions between failed matches. In particular,
Aho-Corasick is used to match multiple patterns in the data
set, with a time complexity of O(n + l + z) with l as an
upper bound on patterns’ size, and z the total number of
appearances of the patterns, and a preprocessing time ofO(n).
This algorithm is usedmainly for string search, as for example
finding the smallest string of a given length, that contains k
strings.

The bit-vector parallel algorithm for string matching [32].
This algorithms is built from the ideas of the dynamic pro-
gramming algorithm for string matching, taking advantage of
a bit-mask representation of the matching dynamic program-
ming matrix. The matrix captures the bit representation of the
difference between that data and the pattern, being able to
manipulate the matrix in parallel using bit-wise operations.
This approach constitutes a significant matching speedup
with a time complexity of O(n∗mw), where w is the word size.
This algorithms is of special interest in bioinformatics and
DNA sequencing, as it is able to detect pattern matches with
a bounded error between the pattern and its match string in
the data set, for example a maximum error of 3 molecules.

Taking into account existing matching algorithms, we note
that when considering a large amount of data as the sequence
of tokens, some pattern matching algorithms like BM or
brute-force, in their worst case, are not usable in practice
(cf., Section V-B). From this analysis, we can conclude that
it is necessary to know the features of many pattern match-
ing algorithms as a specific strategy may be used to boost
performance, depending on the sequence of tokens and used
patterns.

B. UNKNOWN SEQUENCES OF TOKENS AND PATTERNS
To exemplify the shortcomings of existing matching algo-
rithms, with respect to their flexibility, consider a scenario
where a web application has a filtering policy to prevent
malicious requests that can affect its availability, compromise
security, or consume excessive resources (e.g., application
firewalls for Amazon Web Services [35]). Here, the use of
algorithms like KMP or BM may not work appropriately
because the token sequence and the pattern to search may be
unknown beforehand. More precisely, when it is necessary to
filter for malicious requests, we may not know exactly which

2) Nothing

3) Death

1) Creation

reaction iteration t iteration t + 1

Legend
: solution : cells : reagent

4) Combination
(e.g., creation
 & death)

 reagent

FIGURE 2. Different reactions of a cell to a reagent.

patterns, that represent malicious requests, should be used.
For example, we may need to extend the filtering policy with
new kinds of patterns if new variants of security attacks are
observed. In this example, if we are using exact patternmatch-
ing (i.e., a key-value table), changing the pattern model to use
regular expressions may be necessary; that is, a completely
different implementation is needed (e.g., using a deterministic
finite automaton).
In application domains such as stream processing over the

Internet, patterns and their conditions to be matched (e.g., a
period of time) can vary on the fly;meaning that the semantics
of pattern matching algorithms should be flexibly adaptable
without tweaking or changing these algorithms.

III. Matcher Cells
Through small entities with simple rules, self-replication al-
gorithms [11] allow developers to flexibly express the se-
mantics of a process. This is because each rule defines a
portion of the semantics, and their composition defines the
full semantics. The composition process allows developers to
easily adjust or create new semantics (on the fly), bringing a
flexible expressiveness to define matching semantics.
This section defines a self-replication algorithm, named

Matcher Cells, to flexibly match patterns, brining a variety of
matching semantics that allows developers to express differ-
ent the pattern matching algorithm semantics (Section II-A).
This section is organized as follows.We first start introducing
self-replication behaviors in cells to describe how to use
these behaviors to match patterns. The section then describes
how to express a wide range of pattern matching semantics
through compositions of cell behavior rules. Using the lan-
guage Scheme [36], in Section III-D, we describe a generic

4 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

a

$

a
a

a→b a
a→b

b

Solution 1

Solution 2

creation
time

seed’s
creation time

creation
time

Legend
: cell with a pattern : reagent with a

token
a→b a

Data : metainformation

iteration t iteration t + 1 reagent

: link between a
parent and child cell

$: match cell, i.e.,
the matching of a pattern

FIGURE 3. Reactions of two solutions to a reagent a. Solution 1 contains
a cell that must match a. The cell in Solution 2 must match a→b.

recipe to implement our proposal in different paradigms such
as programming languages like JavaScript.We finally present
a concrete implementation of Matcher Cells in TypeScript, a
typed version of JavaScript.

A. SELF-REPLICATION ALGORITHMS

Self-replication algorithms are inspired by cellular behav-
ior [11]. Concretely, these algorithms emulate the reactions of
a set of biological cells to a sequence of reagents in a solution.
Fig. 2 shows the different possible reactions of a cell to a
reagent, which can be:

1) the creation of an identical copy of the cell, or with a
small variation to persist in the solution,

2) nothing,
3) death, or
4) a combination of the previous ones.

An algorithm that follows self-replicating behavior is de-
fined by a pair (Seeds,R), where Seeds is the first set of
cells into a solution, and R is the set of rules that govern
the evolution of the solution using combinations of reactions.
Additionally, if we consider that a solution is an autopoietic
system [37], this solution can add or remove cells to maintain
itself after all the current cells react to a reagent.

B. MATCHING PATTERNS
To match patterns, Matcher Cells’ algorithm borrows con-
cepts from self-replication algorithms, giving flexibility to
match patterns. For this proposal, we consider reagents as
tokens that must be matched, and cells to contain patterns
of tokens and metainformation. We use the notation c(P) to
represent a cell c that must match a pattern P, and c($) for
a matched cell, which is the match of a pattern. When a cell
creates a new cell, the new cell can gather metainformation
like the link to the parent or the time when the cell was
created. Fig. 3 illustrates the reaction to reagent a of two
solutions:

Solution 1 - c(a): a cell that must match the pattern a
(i.e., only one token), creating a cell c($) when
a is matched.

Solution 2 - c(a→b): a cell that must match a pattern that
is composed of the sequence a→b (i.e., a and
then b). When this cell matches a token a, it
will create a new cell, c(b), which must match
the token b.

In both solutions shown in Fig. 3, the cell reaction is
creation, and the links between them are stored in the metain-
formation of the created cell. Additionatlly, Solution 2 shows
the seed cell, c(a→b), gathers its creation time information,
which is passed to the new cell when it is created.

Fig. 4 shows three different evolutions of the same solution
with a cell c(a→b) and a sequence of tokens a→a→b→b. The
first evolution ends with only one match (i.e., c($)) because a
cell dies when this one creates new one(s); for this reason,
c(a→b) dies when it matches a token b, and c(b) when it
matches b. The second evolution ends with four matches
because no cell dies when there is a match. In the third
evolution, the solution evolves with two matches because the
seed (i.e., c(a→b)) never dies, but other cells die when they
match a token. Which is the correct evolution? The answer
will depend on the semantics required by programmers, open-
ing up the flexibility for programmers to choose the most
convenient option for their case.

C. MATCHING PATTERNS WITH FLEXIBLE SEMANTICS
As Fig. 4 shows, matching semantics strongly affects how a
pattern is matched as well as how many times each pattern
will be matched with a specific sequence of tokens.

In our self-replication algorithm, Matcher Cells, different
matching semantics can be expressed through compositions
of simple rules, which can be per-cell or per-solution:

1) per-cell rules: They are applied to each cell in a current
manner using the same token.

2) per-solution rules: They are applied after all per-cell
rules. Aiming to emulate the behavior of an autopoietic
system, per-solution rules point to keep a solution useful
to continue the developer-defined matching process.

An example is the per-cell rule named match token, which
executes the reaction of each cell to a token as shown in Fig. 2.

VOLUME 11, 2023 5

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

a→b
a

First evolution

a
b

a→b a

b

b

$b

a

b

Second evolution

a→b a→b

$

b b

$

b

a→b

b

a→b a

b

ba

b

Third evolution

a→b a→b

$ $
b

a→b

$
b

a→b

b b$ $

b

b a→b

Sequence: a → a → b → bSeeds: { c(a → b) }

FIGURE 4. Three different evolution scenarios of a solution to the same sequence of tokens and pattern. The first evolution ends with a match, the second
one ends with four matches, and the last one ends up with two matches.

Using this and other rules, Fig. 5 illustrates five different
potential matching semantics of our algorithm:

1. Multiple Matches. Using only the match token rule,
Matcher Cells provides multiple matching semantics. For ex-
ample, Fig. 5. shows that c(a→b) generates two c($)s when it
meets the sequence of a→a→b.

2. Single Match. This semantics is provided by the com-
position of match token and kill creator rules. This new rule
kills the parent cell when a new cell is created. For example,
c(a→b) creates only one c($) because c(a→b) is killed by the
rule when c(b) is created as it is shown in Fig. 5.2.

3. One Match at a Time. Programmers often need to execute
an action every time that the same pattern occurs, e.g., when
a security flaw occurs [38]. However, the composition of
match token and kill creator will kill the seed cell such as
c(a→b), resulting in a single match. Using the composition
of match token and kill creator together with add seed, a per-
solution rule that works after previous rules is applied; then
it is possible to match the same pattern every time it occurs
(Fig. 5.3). The add seed rule creates a copy of the seed cell
whenever there is no cell in the solution, allowing the matcher
to start a new matching process (i.e., with a new cell and
solution).

4. Always Start a Match. The same pattern might start simul-
taneously, making simultaneous processes of matching work
at the same time. For example, this semantics can be useful
to capture simultaneous multi-intruders [39]. However, the
previous compositions of rules does not allow Matcher Cells
to start a new match if there is a matching process already
executing. If we replace the add seed rule with always add,

the algorithm will always be able to start the process of a
new matching (Fig. 5.4). Note this semantics does not keep a
link between the seed and its child cell because the kill creator
rule kills the seed, and the always add rule inserts a new seed.
Although this matching semantics and multiple matches lead
to the same number of matches, both semantics are differ-
ent. This is because the multiple matches semantics allows
the matcher to continue a match from any part of a pattern
already matched, instead the always start a match semantics
can only start a match from the beginning of a pattern. To
illustrate this difference, consider that the sequence of tokens
has b as suffix, i.e., a→a→b→b.With this extended sequence,
multiple matcheswould have two new matches, while always
start a match semantics would not have any new match when
the last b token is received by the solution.

5. Match per Time Frame. Suppose the scenario presented
in Section Unknown Sequences of Tokens and Patterns,
where malicious requests occur in a short period of time
(e.g., seconds). Here, patterns should be matched before
∆time elapses. Using the trace time-life rule, all cells are
killed when the time period elapsed from the first tokenmatch
is greater than ∆time. Fig. 5.5 shows an example of such
situations.

D. EXPRESSING CELLS AND RULES
Cells and rules can be expressed using different program-
ming paradigms’ abstractions (e.g., objects). To illustrate our
proposal with one of the most straightforward programming
abstractions, we use functional programming, as realized in
Scheme [36]. As such, cells and rules are entirely expressed
using only plain functions. The benefit of using a pure func-

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

a→b
a a→b

b
ba→b

bb

a→b
a

b
b

b $

a→b
a

b
b

b
a→b

2) Single Match

1) Multiple Matches
Rules (R):

Per-cell:
 match token

Rules (R):

Per-cell:
 match token
 kill creator

Rules (R):

Per-cell:
 match token
 kill creator

Per-solution:
 add seed

Sequence: a → (△t > 5 secs) → a → b

3) One Match at a Time

$

a→b
bb

$$

Seeds: { c(a → b) }

・・・・・

・・・・・

(△t > 5 secs)

・・・・・

a→b

b

b

b

a

a

a(△t > 5 secs)

(△t > 5 secs)

Rule trace life-time
kills c(b)

5) Match per Time Frame
Rules (R):

Per-cell:
 match token
 kill creator

Per-solution:
 trace life-time

a→b
a b

・・・・・

ba(△t > 5 secs)

Time of
first match
of a token

a→b
a

b
b a→b

Rules (R):

Per-cell:
 apply reaction
 kill creator

Per-solution:
 always add

4) Always Start a Match

$

(△t > time)

・・・・・
aa→b

b

a→b a→b

bb $

FIGURE 5. Using the same pattern and sequence of tokens, five different results because of matching semantics.

tional abstraction is that this description can be used as a
recipe for any Turing-complete programming language.

As token and pattern definitions strongly depend on the ap-
plication domain (e.g., string matching), they are not consid-
ered as part of Matcher Cells’ core. In the validation section,
we discuss two applications, where concrete implementations
for tokens and patterns are presented.

1) Cells
A cell is a function composed of a pattern and its metainfor-
mation, which may create other cells when it reacts to a token
(Fig. 2). In our proposal, the signature and implementation of
a cell are:

; ; Signature
; ; Cell : Pattern x MetaInf −> (Token) −> MetaInf U List<Cell>
(define (Cell pattern meta−inf)

(lambda (token null)
(i f (null? token) meta−inf

(let ([result (react token pattern)])
(i f (pattern−matched? result)

(return−list−with−new−cells result))
(return−empty−list)))))

A Cell function returns its metainformation whenever it is
called without a token, otherwise it returns the reaction to the
token. The result of a cell reaction is a (possibly empty) list
of matching cells.

2) Rules
We define per-cell and per-solution rules, which correspond
to the functions applied to a list of cells (Section III-C).
Application of a rule may remove or add other cells from the
cells list. A per-cell rule is applied to each cell into a solution,
which consumes a token of its sequence to match. A per-
solution rule is applied to resultant cells after applying all per-
cell rules. The most basic example of a per-cell rule is identity,
which given a cell, it returns it untouched. An example of a
per-solution rule can be remove-match-cells, which removes
all match cells that are into a solution. Both rule examples are
presented in the following Snippets with their corresponding
signatures.

; ; Signature
; ; Per−Cell Rule: Token x List<Cell> −> List<Cell>
(define (identity token cells)

cel ls)

; ; Signature
; ; Per−Solution Rule: List<Cell> x Pattern −> List<Cell>
(define (remove−match−cells cel ls pattern)

(remove−match−cells cel ls))

Additionally, we introduce composable rules. A compos-
able rule is a function that takes a rule (say rule 1) as parameter
and returns a new rule (rule 2), implying that a rule is applied
first and then its composition rule. We posit kill creator as a
composable rule:

VOLUME 11, 2023 7

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

+ ComposableRule(rule)
+ apply(cells,…)

- rule

<< abstract >>
ComposableRule

+ apply(cells,…)

<< interface >>
PerCell/SolutionRule

+ Cell(pattern, metaInfo)
+ react(token)
+ getMetaInf()

- pattern
- metaInf

Cell

+ Solution(seeds, cellRule, solutionRule)
+ match(tokens)

- cells
- cellRule
- solutionRule

Solution

Identity

+ apply(cells,…)

FIGURE 6. Main components of Matcher Cells’ architecture

; ; Signature
; ; Composable−Rule: Rule −> Rule
(define (kill−creator rule)

(lambda (cel ls token)
(let ([new−cells (rule cel ls token)])

(remove∗ (map get−creator new−cells) new−cells))))

Using composable rules, we can create different semantics
like the ones shown Fig. 5. In the code snippet below, we
present the multiple match and single-match semantics using
composable rules, both starting with the identity rule.
(define multiple−match (match−token identity))
(define single−match (kill−creator (match−token identity)))

E. AN OBJECT-ORIENTED ARCHITECTURE
This section now shows an object-oriented architecture for
Matcher Cells that can be used in languages like Java,
JavaScript, and TypeScript. Fig. 6 shows the core components
defined in our proposal. A solution carries out the matching
process and is created with seeds, and the composition of
per-cell and per-solution rules. Both types of rules evolve
the cells in the solution. In addition, a developer can use
of the Composite design pattern [40] to create composable
rules, where the identity rule is the leaf component of this
design pattern. A cell contains the pattern that must match,
and metainformation that is cloned with potential mutations
when passed to children cells. With the react method, a cell
reacts to a token, potentially returning the creation of new
cells.

We provide a concrete implementation of our object-
oriented architecture, namedMCJs, using TypeScript, a typed
version for JavaScript (one of the most used programming
languages to develop Web applications [41], [42]). In the fol-
lowing code snippet, we illustrate the matching of pattern abc
using this object-oriented implementation. Lines 1 to 5 define
the pattern abc. Lines 4 and 5 use an object composition to
set the sequence. The solution, which is composed of a cell
and two rules, is defined in Line 9. Line 13 uses the defined
solution to match the pattern with the input "abc".

1 let a:Token = new Token("a") ; / / match a
2 let b:Token = new Token("b") ; / / match b
3 let c :Token = new Token("c") ; / / match c
4 let ab:Sequence = new Sequence(a ,b) ; / / match ab

5 let abc:Sequence = new Sequence(ab, c) ; / / match abc
6

7 let seed: Cell = new Cell (abc , new MetaInformation()) ;
8

9 let sol : Solution = new Solution([seed)] , / / l i s t of seeds
10 new OnlyOneMatch() , / / ce l l rule
11 new AddSeed()) ; / / solution rule
12

13 sol .match("abc") ; / / f ind one match

IV. VALIDATION

This section validates the usability and applicability of
Matcher Cells through two applications, from different do-
mains, that focus on matching stream sequences of tokens,
a distinguishing feature of our proposal. The first application
is the identification of tweets in the Twitter feed. The second
application is the implementation of context identifications
in a context-aware system [18]. Both implementations are
available online [19].

A. APPLICATION 1: IDENTIFYING TWEETS

Fig. 7 shows our emulated Twitter environment using a real
data set of 100,000 tweets related to the video game subject
during 2020. Every 60 seconds (a customizable parameter),
these tweets appear in the Web page’s feed (the central panel
in the figure). A user can identify specific tweets through
the matching of a pattern in one tweet, as the figure shows
with a red background. In this application, the token sequence
corresponds to appearing tweets as time passes; this behavior
is similar to that of streaming services.

As tweets are freely written, the same concept in a tweet
might be written in different ways, for example, ‘‘play’’,‘‘play
station’’, or ‘‘ps1’’ all refer to the same concept. Addition-
ally, a concept can be expressed more times than others,
identifying potentially more enthusiastic tweets. Taking into
account the previous two observations, this Web application
exhibits two features of Matcher Cells: regular expressions
andmultiple matching semantics. We highlight that, although
the definition of a specific pattern language is not part of
our proposal, it is not difficult to use a pattern language
specification.

In this application, the multiple matches semantics is used
to identify the intensity of a pattern. Fig. 7 shows that users
can select this semantics in the Web page. As regular ex-
pressions (regex) are used to match different strings that
can represent a same concept because these strings follow a
similar structured form, users can enable the use of regexs to
match similar tweets in this application. To implement regex
in our proposal, we define cells that if they do (not) match
a token, these cells create other cells that expect to match
the following term in a regex. For example, Fig. 8 shows
the matching process of a+b. When token a is matched, the
cell creates a new cell with the pattern a∗b. Additionally, the
following code snippet shows the use of functions that sketch
the a+ regex operator implementation for Matcher Cells in

8 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

1.
Patterns can use

Regular Expressions

2.
Customized
Semantics

FIGURE 7. Web application that uses Matcher Cells to match tweets.

a →b a

a*→b

a →b+ +

FIGURE 8. Using regular expressions in Matcher Cells.

TypeScript.3 While the star function returns a function that
continues matching the same pattern (a∗) until a different
token appears, the plus function applies star when there is a
match (a+ = aa∗).
function star (op: function) {

return function inner(token:string) :function {
let result :function = op(token);

i f (/∗ resul t does not match ∗/) return result ; / / a match ce l l
i f (/∗ resul t matches ∗/) return inner ;

} }

function plus(op:function) {
return function inner(token:string) {

let result :function = op(token);
i f (/∗ resul t does not match ∗/) return inner ; / / end of the match
i f (/∗ resul t matches ∗/) return star (token); / / continue with star

} }

let a_plus :function = plus("a") ; / / th i s function matches "a+"

Given that Matcher Cells can use regex, developers can
express more complex regular expression-based patterns to
match URLs, Hashtags (#), or mentions (@). For example,
a programmer might need to match all tweets containing a
given URL.

B. APPLICATION 2: IDENTIFYING CONTEXTS
A context-aware system adapts its behavior according to the
current identified context [18] from its surrounding execu-
tion environment. Fig. 9 shows a context-aware system that

3A full implementations of this and other operators are available on https:
//github.com/pragmaticslaboratory/match-cell-base. In this implementation,
the functions are exchanged with objects.

adapts the difficulty of addition exercises tasked to students,
according to their performance (i.e., context). In this system,
we identify three contexts:

1) Good performance. If a student answers a number
(parametrized) of exercises correctly in a row, the system
increases by one the number of digits of both terms in the
following exercises.

2) Bad performance. If a student answers a number
(parametrized) of exercises wrong in a row, the system
decreases by one the number of digits of both terms in
the following exercises.

3) No performance evaluated. If a student skips a number
(parametrized) of exercises, the system starts from the
first level (i.e., additions with one digit).

The context-aware system can use the events associated
with correct, wrong, and skip exercises to identify the previ-
ous contexts. Given that theMatcher Cells algorithmmatches
a sequence of tokens, we modified the callbacks of these
events to add the creation of the tokens correct, wrong,
and skip. These tokens represent the respective events, and
the sequence of these tokens represents a stream of events.
To implement this context-aware system, we added three
Matcher Cells instances, where each instance is used to iden-
tify a particular context. When one Matcher Cells instance
matches a pattern, the system executes its associated adap-
tation, e.g., adding one digit in the addition terms in theGood
Performance context.

V. EMPIRICAL EVALUATION
In addition to the usability and applicability validation of
Matcher Cells in the previous section. We now turn our atten-
tion to the evaluation of the developer experience, algorithm
performance, and programming abstraction expressiveness of
self-replication algorithms for pattern matching.

VOLUME 11, 2023 9

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

FIGURE 9. Web application that uses Matcher Cells to identify the context associated with the student performance to resolve additions.

A. DEVELOPER EXPERIENCE
Throughout this paper, we claim that Matcher Cells is simple
to use by developers because of the rule composition; com-
paring to other pattern matching algorithms like regex, which
is perceived as difficult by both students and professional
programmers [43], [44]. This section presents the results
of four evaluations related to developer experience. These
evaluations were carried out by 23 undergraduate students in
the third-year computer science program at the Universidad
Católica del Norte (Chile). After a 40-minute session teaching
Matcher Cells, the students are asked to answer five tasks
of pattern matching, where they have to express the correct
pattern and composition of rules in Matcher Cells, specifi-
cally using a Web interface [19] for MCJs. Table 2 contains
a brief description of the five tasks, ordered by incremental
complexity.

1) Experience Results
As a first result, we highlight that 100% of the develop-
ers recommended Matcher Cells for the development of pat-
tern matching algorithms. The usability of Matcher Cells
is evaluated using the System Usability Scale (SUS) [20]
approach, which has been widely used for years in differ-
ent contexts [45]–[47]. This usability evaluation works as
a proxy to measure how error-prone is to use a matching
pattern algorithm that requires to compose a set of rules
before using it. The data used to create the charts and SUS
evaluation are anonymized and available on http://pleger.
cl/sites/matchercells/results.html (responses in Spanish and
translated to English).
Percentage of developers who solved a task. Fig. 10 com-
pares the percentage of participants who solved a task. For
the first two tasks, which are the easiest ones, over 95%
of participants solved these tasks. The percentages of the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Task 1 Task 2 Task 3 Task 4 Task 5

FIGURE 10. Percentage of students that finished the task.

remaining tasks had a lower success rate than the previous
ones. The last task had the lowest percentage (close to 80%),
given that this task is the most challenging one, as it requires
the use of a time constraint to match a pattern.
Average time to solve a task. Fig. 11 shows the average
solution time per task. For the first four tasks, the participants
solved them significantly faster than the last task, which took
almost double the time. As in the previous evaluation, we
think this task took more time because it requires an extra
configuration to be solved: the time to match a pattern.
How easy a task was resolved. Using a Likert scale [48] of
five levels (from ‘‘Strongly agree’’ to ‘‘Strongly disagree’’),
we asked to the participants the question: ‘‘How easy was the
task?’’. The answers to the question are shown in Fig. 12.
Although the ‘‘Strongly agree’’ option is not the most chosen
in all tasks, there is a clear preference towards the ‘‘Agree’’
option; in fact, no participant chose the ‘‘Strongly disagree’’
option. Using this evaluation, we might claim that the use of

10 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

TABLE 2. Pattern matching tasks that developers asked to be solved.

Id Description
Task1 Use of the Multiple Matches rule to find four simultaneous matches
Task2 Use of the composition of the Single Match and Kill Creator rules to find only one match
Task3 Use of the composition of the Single Match, Kill Creator, and add Seed rules to find two consecutive matches
Task4 Use of the composition of the Multiple Matches and Always Seed rules to find three matches that start with the same symbol
Task5 Use of the composition of the Multiple Matches and Trace Life-time rules to find all possible matches that happen within 100

milliseconds

S
ec

on
ds

0

5

10

15

20

25

30

35

40

45

50

55

60

Task 1 Task 2 Task 3 Task 4 Task 5

FIGURE 11. Average time per task.

S
tu

de
nt

s

0

2

4

6

8

10

12

Strongly agree Agree Neutral Disagree Strongly disagree

Task 1 Task 2 Task 3 Task 4 Task 5

FIGURE 12. Using a Likert scale: how easy was the task?

Not Acceptable Acceptable GoodPoor

0 30 50 70 85

Excellent

100

FIGURE 13. Using SUS, the value range determines how usable an
interface is.

Matcher Cells is not complex.
Usability. To evaluate Matcher Cells in terms of usability, we
used the SUS approach [20]. To use SUS, the participants who
use a product (e.g., software) are asked to score the following
ten sentences using the five-level Likert scale:

1) ‘‘I think that I would like to use this system frequently’’
2) ‘‘I found the system unnecessarily complex’’
3) ‘‘I thought the system was easy to use’’

4) ‘‘I think that I would need the support of a technical
person to be able to use this system’’

5) ‘‘I found the various functions in this system were well
integrated’’

6) ‘‘I thought there was too much inconsistency in this
system’’

7) ‘‘I would imagine that most people would learn to use
this system very quickly’’

8) ‘‘I found the system very cumbersome to use’’
9) ‘‘I felt very confident using the system’’

10) ‘‘I needed to learn a lot of things before I could get going
with this system’’

To calculate a final score, we follow a three-step procedure:

1) Add up the final score for all odd-numbered questions,
then subtract 5 from the total to get final-odd.

2) Add up the final score for all even-numbered questions,
then subtract 25 from the total to get final-even.

3) Add final-odd and final-even, then multiply the result by 2.5.

The final score is in the range of 0-100, which determines
a tool’s usability, shown in Fig. 13 for Matcher Cells.1

Fig. 14 shows, in ascending order, the score of the usability
evaluation using SUS for each participant. At first glance,
we observe that most participants (52.2%) find ‘‘Acceptable’’
the use of Matcher Cells. A percentage of 39.1% of students
find its use ‘‘Good’’ or ‘‘Excellent’’, and 8.7% (equivalent
to two students) find its use ‘‘Poor’’. The average score is
66.19, meaning that the usability to use Matcher Cells is
‘‘Acceptable’’, close to ‘‘Good’’.
Conclusion. Considering the results of our four empirical
evaluations, we can observe that even if this pattern matching
algorithm requires to configure a set of rules before using, de-
velopers are able to use it without a steep learning curve. The
trade-off between a pre-configuration of the rule composition
and the flexibility to express matching semantics can affect
the preference of Matcher Cells. Nevertheless, if developers
can use an external library for rule compositions, it might give
preference towards Matcher Cells.

B. PERFORMANCE
The main goal of this study focuses on defining a self-
replication algorithm to flexibly express matching seman-
tics; hence, we have yet to sacrifice any potentially valuable
feature based on its expected cost. Nonetheless, any pattern

1Subtle variations in the ranges can be found on the Web.

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

Students

S
U

S
 s

co
re

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23

Good

Excellent

Good

Acceptable

Poor

Not
Acceptable

average: 66.19
std dev: 14.7

FIGURE 14. In ascending order, the SUS score for 23 students.

FIGURE 15. Scenario 1: Sequence of tokens anx and pattern x .

matching algorithm must exhibit a performance evaluation
against large amounts of data. Hence, we carry out a prelimi-
nary performance evaluation using the TypeScript implemen-
tation of Matcher Cells.

In our proposal, we evaluated Matcher Cells with three
scenarios with different effects, where each one increases the
number of cells or rules to manage. The first scenario only
manages one cell in the solution. The second scenario man-
ages a limited number (n) of cells in the solution. The last one
creates cells for every new token that appears in the sequence,
meaning that Matcher Cells has to manage a massive number
of cells simultaneously in the solution. To execute these three
scenarios, we used NodeJS (v16) [16] on a Macbook Pro
(2020) with a 2 GHz Quad-Core Intel Core i5 and 16GB of
RAM running macOS Big Sur, and Matcher Cells’ GitHub
revision e4c556d (April 7, 2021). Fig. 15, Fig. 16, and Fig. 17
show these three scenarios of the performance evaluation
comparing three algorithms (TABLE II-A): brute-force (base-

line), KMP [1] (efficient algorithm), and Matcher Cells.
For KMP, we use an implementation available on the NPM

repository [49]. Each scenario’s length sequence goes from
50,000 tokens to 2,500,000 tokens.
Fig. 15 shows the evaluation of the simplest scenario of a

pattern consisting only of one character (x), which appears at
the end of the sequence. For example, if the sequence length is
50,000, the sequence is defined by a49,999x, and the pattern is
x. Given that this scenario is simple, we can observe the brute-
force algorithm has the best performance, and our proposal
has the worst performance. This is becauseMatcher Cells and
KMP require overload to work; for example, our proposal
must keep cells and execute a set of rules that are composed.
Fig. 16 shows the multiple matches of the pattern ax in a

sequence defined by the regex (ax)n. For example, if n = 3,
the sequence is axaxax, and the pattern is ax. In this case,
we can see that KMP has the best performance, while our
proposal has a similar performance with the brute-force al-

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

FIGURE 16. Scenario 2: Sequence of tokens (ax)n and pattern ax .

FIGURE 17. Scenario 3: Sequence of tokens anx and pattern an. Note the brute-force algorithm is not in the chart because its performance evaluation is
out of the chart range, i.e., too slow.

gorithm. Compared to the previous Matcher Cells evaluation,
the performance in this case is 3 times better for large se-
quences. This is because every time there is a match, all cells
except the seed are removed from the solution.

Fig. 17 shows the performance evaluation of a complex
pattern, an, in a sequence of anx. For example, if n = 3,
the sequence is aaax and the pattern is aaa. First, note that
the figure does not display the brute-force algorithm. This
is because its performance is orders of magnitude slower
than the performance of the other algorithms. Therefore, we
excluded it to be able to observe the difference between
Matcher Cells and KMP. Second, although KMP is better
than Matcher Cells, both algorithms have a similar trend, in-
dicating that our proposal might be scalable to more complex
sequences and patterns.
Conclusion.With this preliminary evaluation, we can observe
that our proposal is not as efficient as existing pattern match-
ing algorithms. Indeed, if we carry out a preliminary time

complexity of the current version of Matcher Cells, we might
estimate:

• Worst case. If no rule removes cells, the time complexity
isO(cr∗n), where c is the number of cells, r is number of
rules, and n is the length of the input. Although this result
is clearly much slower than the existing algorithms, we
can observe that the use of Matcher Cells with regular
expressions is better than that of the brute-force algo-
rithm (Fig. 17). This case shows that our algorithm is
exponentially time-consuming, meaning that this algo-
rithm can be extremely slow.

• Best case. If a rule like kill creator is used, the time com-
plexity might improve toO(1r ∗n) → O(n) because only
one cell is alive during the matching process. This time
complexity means that Matcher Cells is linear, making
it works fast. However, this efficient result only happens
when a programmer wants to match the first match in an
input, and not all possible matches.

VOLUME 11, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

Although this paper explores how we might use self-
replication algorithms to flexibly match patterns, we think,
as a future step, that is possible to explore efficient ways to
process units like cells. For example, as our current imple-
mentation evaluates all cells within a solution for every new
token, we might index or classify cells to prevent evaluations
when specific tokens do not affect some cells.

C. PROGRAMMING ABSTRACTIONS AND
EXPRESSIVENESS
A distinguishing feature of our proposal is the composition
of simple abstractions, i.e., rules, to flexibly express match-
ing semantics. By simple, we mean a rule that only targets
one concern in an isolated manner, where compositions of
these rules are able to express advanced semantics. The use
of simple abstractions boosts modularity [50], meaning that
the reuse of abstractions (components) by allowing separate
concerns. However, the effect of tyranny of the dominant
decomposition [51] raises the following issue: a concern that
does not fit into the initial view of a system ends up being
tangled and scattered with other concerns, implying that this
concern cannot be defined in an isolated manner. This issue
appears in the rule compositions of our proposal as well.

Consider as an example a mobile context-aware system
scenario where the system must match malicious patterns if
and only if the Internet connection context is unsafe. For this
scenario, an intuitive composition of the per-solution rules
is to use the add-seed and then the kill-all-on-safe rules, as
presented in the code snippet below. In this composition,
add-seed creates new cells to match malicious patterns, while
the kill-all-on-safe rule kills all cells, that match malicious
patterns, when the Internet connection is safe because these
patterns are only relevant in an unsafe context. Unfortunately,
note that the composition will not match all desired malicious
patterns. In particular, any pattern that starts in a safe context
and ends the matching process in an unsafe context will
not be matched. This is because the rule kill-all-on-safe kills
any cell in a safe context, involving the cell seeds added by
the add-seed rule. The erroneous behavior arises due to the
composition of two isolated rules whose impacts affect each
other, e.g., kill-all-on-safe impacts on add-seed.
(define one−match−at−a−time−on−unsafe

(kill−all−on−safe (add−seed identity)))

Regarding Matcher Cells’ expressiveness, we claim the
composition of simple rules in our proposal allow for an
expressive definition of the matching semantics. To affirm
that our proposal can express and execute any matching
semantics that a Turing-complete language can express, we
only need to simulate one of these languages with our rules.
The λ-calculus [52] is a Turing-complete and functional pro-
gramming language whose abstractions consist of functions
that take one function as parameter and return a function
as a result. Like the λ-calculus, Matcher Cells’ rules are
also functions that take functions (cells) as parameters and
return functions (cells) as a result. Using the currying design
pattern [53] to remove the need of a second parameter in rules,

we can say our proposal simulates the λ-calculus; therefore,
Matcher Cells is a Turing-complete expressive.
Conclusion.We can affirm thatMatcher Cells users will have
to understand how to compose rules; indeed, we used a 40-
minute session to teach developers how to compose rules
before evaluating Matcher Cells. Likewise, if functions can
use all the power of a Turing-complete language, we can also
affirm that these rules are expressive enough. However, the
use of high-level programming abstractions and expressive-
ness present the following trade-off:

• Programming abstractions. Using simple abstractions
like rules, developers can enhance the flexibility to ex-
press different matching semantics in one algorithm;
being careful in the composition of rules. However, if
a rule has to tangle concerns, modularity and reuse for
the composition of rules might be affected.

• Expressiveness. To define rules, developers can use a
Turing-complete language. However, the use of the full
power of a language can break the spirit to be simple
enough only to implement one concern of a particular
matching semantics.

A potential solution is to set a boundary between abstrac-
tions and expressiveness. This boundary can be addressed
by the use of a domain-specific language [54] to define
language-level rules that enforce the simple spirit of matching
rules that are expressive enough.

VI. RELATED WORK
String pattern matching has been a subject of study since
the late 1970s and remains a vibrant research field due to
its diverse applications that encompass a broad spectrum of
domains, including intrusion detection systems, bioinformat-
ics, web search engines, spam filters, natural language pro-
cessing, and web scraping. According to [6], string matching
algorithms fall into two main categories: exact string match-
ing algorithms and approximate string matching algorithms.
The former aims to identify a complete match, whereas the
latter is designed to locate a substring that closely resembles
a specified pattern string.
Exact string matching algorithms can be further catego-

rized into single-pattern and multiple-pattern exact match-
ing approaches. In single-pattern matching algorithms, the
algorithm is designed to work with a single pattern as input,
directing its efforts to locating that specific pattern within
the target database (i.e., sequence of tokens). In contrast,
multiple-pattern matching algorithms are equipped to handle
a single input, tasked with searching for multiple instances of
that input throughout the target database. Moreover, software
based exactmatching algorithms can be divided into character
comparison, hashing, bit-parallel, and hybrid approaches [6],
[55].
Unlike exact string matching algorithms, approximate al-

gorithms can be classified as filtration-based algorithms and
backtracking-based algorithms. The first one follows a two-
stage process. In the initial stage, these algorithms pinpoint

14 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

potential occurrences of patterns within the text. In the sub-
sequent stage, all of these identified locations undergo com-
prehensive verification. On the other hand, approximate al-
gorithms build upon the foundations of exact string matching
algorithms but precise stringmatching algorithms are adapted
to facilitate approximate searching through edit distance op-
erations [56]–[58].

For instance, the Levenshtein distance [59], also known
as edit distance, is a measure of the minimum number of
single-character edits (insertions, deletions, or substitutions)
required to change one word into another. For example, let’s
consider two words: ‘‘kitten’’ and ‘‘sitting’’ . In total, we
needed seven operations to transform ‘‘kitten’’ into ‘‘sitting’’.
Thus, the levenshtein distance between these two words is
7. The smaller the levenshtein distance, the more similar
the words are in terms of their spelling or structure. Such
approaches often promote the utilization of compact data and
data structures based on suffix indexing [60], [61].

To evaluate Matcher Cells against the most relevant ap-
proaches in terms of flexibility, we categorize them into three
sets: classical general-purpose algorithms, domain-specific
algorithms, and nature-inspired models.

A. CLASSICAL GENERAL-PURPOSE ALGORITHMS
Classical general-purpose algorithms for string pattern
matching are foundational techniques designed to efficiently
locate occurrences of a specific pattern within a given text or
a sequence of tokens. These algorithms encompass character-
based, hashing, suffix automata, bit-parallel, and hybrid ap-
proaches, as categorized by [62]. A concise overview of each
follows.

The character-based approach is a classical method that
addresses string matching problems by directly comparing
individual characters. This method does not entail any pre-
processing and typically involve two essential stages: the
searching phase and the shift phase. Previous research has
sought enhancements for both stages. Significantly, among
various character-based approaches, the BM algorithm [25]
stands as a benchmark and standard method in the field.

The suffix automaton is a composite structure involving
two interconnected yet separate automaton constructors: the
deterministic acyclic finite state automaton, which serves as a
data structure representing a finite set of strings, and the suffix
automaton, a finite automaton functioning as a suffix index
for matching purposes [63]. This strategy is suitable for long-
length patterns and performs very well because as it gives a
pre-generated prefix table, so the procedure allows skipping
certain comparisons during matching.

KMP [1] and BM [25] are examples of algorithms that
uses the concept of automata, mainly focus on performance.
The Matcher Cells algorithm, on the contrary, focuses on
the runtime flexibilities that enables developers to customize
matching semantics, inspired by the self-replicating behav-
ior of cells. Therefore, we should not directly compare
Matcher Cells with existing proposals in terms of perfor-

mance; rather we should compare them regarding the flexi-
bility to match patterns in different ways.
In hashing-based strategies, characters are represented by

hash values rather than being compared individually, signif-
icantly reducing computational overhead through the com-
parison of integer values instead of characters [64]. For in-
stance, the Karp-Rabin algorithm [65] employs this method
to address string matching challenges, conducting compar-
isons from left to right. However, the approach is constrained
by hash collisions, where two distinct strings may map to
the same numerical value. While these methods accelerate
pattern matching, they ultimately rely on character-based
comparisons and lack the runtime flexibilities offered by
Matcher Cells.
Other classical algorithms are bit-parallel and hybrid ap-

proaches. The first one relies on the principles of parallel
computing, reducing the number of operations within the
algorithm to match the number of bits in a computer word
[66]. This algorithm demonstrates speed and efficiency, par-
ticularly when the length of the provided pattern p is shorter
than the word length [64]. The second one combines the
advantages of different algorithms and is performs better than
individual algorithms [67]. These approaches can combine
one or more character-based methods, one or more meth-
ods from automata-based and character- and automata-based
methods [6]. In terms of flexibility, each of them lacks the
option for semantic customization.

B. DOMAIN-SPECIFIC ALGORITHMS
Domain-specific algorithms for pattern matching are tailored
methods designed to address specific application domains or
types of data. Unlike general-purpose algorithms that aim
for versatility across various scenarios, domain-specific al-
gorithms are optimized to excel in particular contexts. While
Matcher Cells can operate in the same domains as classical
algorithms, it could be especially advantageous in domains
where temporal information is crucial for pattern detection,
particularly in highly dynamic environments.
In the realm of information security, specifically con-

cerning spambots, algorithms play a crucial role in pro-
tecting digital systems and user data from the actions of
automated programs engineered for spam distribution [68].
Spambots, also known as spam robots, are automated scripts
or software applications designed to create and propagate
unsolicited and potentially harmful content, including un-
wanted advertisements, phishing schemes, and malware [69].
According to [70], there are four types of spam detection
techniques: content-based, link-based, machine learning, and
string pattern matching-based. Subsequently, we compare
Matcher Cells with techniques based on string pattern match-
ing in the domain of spambot detection.
Alamro et al. [70] propose an algorithm that can detect one

or more sequences of indeterminate actions in text T in linear
time. The algorithm takes into account temporal information,
because it considers time-annotated sequences and requires
a match to occur within a time window t. Authors state that

VOLUME 11, 2023 15

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

some spambots might attempt to disguise their actions by
varying certain actions. For example, a spambot takes the
actions ABCDEF, then ACCDEF, then ABDDEF, etc. Thus, the
sequence can be described as A[BC][CD]DEF. Spambots
try to deceive by changing the second and third action so
actions [BC] and [CD] are variations of the same sequence.
Additionally, spambots can execute these variations across
different time frames, adding complexity to their detection.

In reference to the research conducted by Alamro et
al. [70], Matcher Cells exhibits comparable functionality by
amalgamating multiple rules to identify variations in actions.
Employing the One Match at a Time and Match per Time
Frame semantic rules, Matcher Cells seamlessly incorporates
temporal information, enabling it to effectively detect spam-
bots that disguise their actions. Furthermore, a pivotal feature
distinguishing Matcher Cells could be the ability to identify
multiple spambots through the application of the Always Start
a Match rule. This rule facilitates a concurrent process of
matching sequences, leading to the simultaneous identifica-
tion of multiple spambots.

To detect the spambot sequences, the algorithm requires
as input sequences temporally annotated actions from user
logs. Specifically, each request in a user log is mapped to a
predefined index key in the sequence and the date timestamp
for the request in the user log is mapped to a time point in
the sequence. Then, by using Manber and Myers algorithm
[71] and bit masking operation, the algorithm can detect one
or more indeterminate sequences in a Web user log.

Ghanaei et al. [72] present a technique for identifying Web
spambots, addressing spam-related issues on the Web. This
method relies on analyzing Web usage behavior, extracting
discriminative features known as action strings from user logs
to distinguish between spambot and human actions. An action
is defined as a set of user efforts aimed at achieving specific
purposes, while action strings represent sequences of actions
for a particular user in a transaction. To implement a real-time,
on-the-fly classification method, the authors construct a trie
data structure based on action strings. Within this structure,
each trie edge includes an action key index, and each node
incorporates the probability of a given action string being
associated with either human or spambot behavior. Conse-
quently, new actions can be classified into two categories:
Match and NotMatched.

Hayati et al. [69] introduce a method for detecting web
spambots. The authors propose a rule-based approach that
analyzes web usage behavior action strings using Trie data
structures. These action strings are indicative of spambot
activity. The system is designed for on-the-fly classification,
meaning it can quickly and effectively identify web spambots
in real-time.

In light of the research conducted by Ghanaei et al. [72]
and Hayati et al. [69], it is anticipated that Matcher Cells
would exhibit superior performance in spambot detection.
This expectation arises from the observation that these studies
do not incorporate temporal information. Therefore, in the
context of evaluating themost pertinent works on string-based

approaches to spambot detection, Matcher Cells is expected
to showcase enhanced flexibility in rule composition, thereby
boosting its effectiveness in identifying spambots.

C. NATURE-INSPIRED MODELS
Nature-inspired models are computational or mathematical
models that draw inspiration from natural processes, phenom-
ena, or systems observed in the natural world.We have identi-
fied two models for comparison with Matcher Cells: cellular
automaton and chemical abstract machine. We elaborate on
these comparisons below.
A cellular automaton [73] is a collection of cells that

evolves through a number of discrete time steps according to
a set of simple rules based on the states of neighboring cells.
In contrast to its simplicity, cellular automata can model com-
plex behavior in various areas such as physics, engineering,
and theoretical biology. For example, it is known that pores
of leaves in plants can be represented using a cellular automa-
ton [74]. Similarly, in Matcher Cells, a programmer can use a
composition of simple rules to define their own matching se-
mantics. Although cellular automata can be Turing-complete,
so it can be applied to pattern matching, to the best of our
knowledge there is no research proposing them as concrete
interfaces for this subject. In contrast, our proposal provides
a concrete interface of rules that are composed and applied
for pattern matching.
A chemical abstract machine [75] is a model for asyn-

chronous concurrent computations. This solution borrows an
idea from a chemical solution in which floatingmolecules can
interact with each other according to reaction rules, allowing
for contact among molecules. This model gives expressive
power to proposals such as Petri Nets [76] in concurrent pro-
gramming. Indeed, it is possible to represent the full Calculus
of Communicating Systems (CSS) [77] using elements such
as agents, molecules and rules defined in chemical abstract
machines. Matcher Cells also adopt a set of reaction rules to
represent expressiveness for defining programmers’ own se-
mantics. It also might be possible to improve the performance
of Matcher Cells, introducing the concept of a membrane that
encapsulates molecule evolutions locally [75].

VII. CONCLUSION
The field of pattern matching algorithms has been vastly stud-
ied, with solid contributions from the research community.
Most of the contributions in the field are related to efficiency
and performance, leaving the flexibility to express different
matching semantics aside. As a consequence, developers of
these algorithms need to learn many algorithmic techniques,
tweak them in contortive ways, or create new specialized
techniques altogether if their specific needs are not supported
off-the-shelf. This paper explores the use of self-replication
algorithms to express different matching semantics flexibly.
As a result of this exploration, we propose Matcher Cells, an
algorithm inspired by the self-replication behavior of cells
that allows developers to match patterns flexibly. The match-
ing semantics of Matcher Cells is expressed by the composi-

16 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

tion of simple match rules. We provide a functional descrip-
tion of our proposal to implement it in any Turing-complete
language that provides functions like abstractions. Addition-
ally, we provide a concrete implementation for TypeScript
used to evaluate our proposal by means of two applications
for streaming data sequences. Additionally, we evaluate the
performance of our approach with an empirical evaluation to
assess the usability aspects of Matcher Cells.

Considering this paper as a first step to propose self-
replication algorithms to match patterns, there are still some
open issues to address. For example, although performance
is beyond the scope of our evaluation, we are aware that the
current implementation needs to improve its performance.We
plan to explore and evaluate index strategies in cells and rules
to solve this issue.

Acknowledgment. We want to thank Marcelo Lazo
(marcelo.lazo@alumnos.ucn.cl), an undergraduate student
from the Universidad Católica del Norte (Chile), who im-
plemented the TypeScript version of Matcher Cells. Addi-
tionally, we thank Éric Tanter (etanter@dcc.uchile.cl) for
providing initial ideas.

REFERENCES
[1] D. E. Knuth, J. H. Morris, and V. R. Pratt, ‘‘Fast Pattern Matching in

Strings,’’ SIAM Journal on Computing, vol. 6, no. 2, pp. 323–350, 2016.
[2] J. Sakarovitch, Elements of Automata Theory. Cambridge University

Press, Oct. 2009.
[3] K. Thompson, ‘‘Programming Techniques: Regular Expression Search

Algorithm,’’Communications of the ACM, vol. 11, no. 6, pp. 419–422, Jun.
1968.

[4] L. Chen, S. Lu, and J. Ram, ‘‘Compressed Pattern Matching in DNA
Sequences,’’ in IEEE Computational Systems Bioinformatics Conference,
Standford, USA, Aug. 2004, pp. 62–68.

[5] B. A. Hamed, O. A. S. Ibrahim, and T. Abd El-Hafeez, ‘‘A survey on
improving pattern matching algorithms for biological sequences,’’ Con-
currency and Computation: Practice and Experience, vol. 34, no. 26, p.
e7292, 2022.

[6] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar, W. Z. Khan, and
M. Imran, ‘‘Exact string matching algorithms: Survey, issues, and future
research directions,’’ IEEE Access, vol. 7, pp. 69 614–69 637, 2019.

[7] G. Barbera, L. Araujo, and S. Fernandes, ‘‘The value of web data scraping:
An application to tripadvisor,’’ Big Data and Cognitive Computing, vol. 7,
no. 3, 2023.

[8] M. A. Khder, ‘‘Web scraping or web crawling: State of art, techniques,
approaches and application,’’ International Journal of Advances in Soft
Computing and its Applications, 2021.

[9] P. Gao, H. Han, J. Guo, and M. Saeki, ‘‘Stable web scraping: An approach
based on neighbour zone and path similarity of page elements,’’ Int. J. Web
Eng. Technol., vol. 13, no. 4, p. 301–333, jan 2018.

[10] A. K. Kar, ‘‘Bio-inspired Computing: A Review of Algorithms and Scope
of Applications,’’ Expert Systems with Applications, vol. 59, pp. 20–32,
2016.

[11] J. V. Neumann, Theory of Self-Reproducing Automata. Champaign, IL,
USA: University of Illinois Press, 1966.

[12] P. Leger and É. Tanter, ‘‘A Self-Replication Algorithm to Flexibly Match
Execution Traces,’’ in Proceedings of the 11th Workshop on Foundations of
Aspect-Oriented Languages (FOAL 2012), Potsdam, Germany, Mar. 2012,
pp. 27–32.

[13] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes, C. Maeda,
and A. Mendhekar, ‘‘Aspect-oriented Programming,’’ in Special Issues in
Object-Oriented Programming. Max Muehlhaeuser (general editor) et
al., 1996.

[14] R. A. Kesley and J. A. Rees, ‘‘A Tractable Scheme Implementation,’’ Lisp
and Symbolic Computation, vol. 7, no. 4, pp. 315–335, 1995.

[15] TypeScript, ‘‘JavaScript with Syntax for Types,’’ 2023, https://www.
typescriptlang.org. Last visited: 01/10/2023.

[16] The OpenJS Foundation, ‘‘NodeJS: A JavaScript Runtime Built for the
Server Side,’’ 2023, https://nodejs.org. (v16.17). Last Visited: 01/10/2023.

[17] Twitter, ‘‘A Microblogging and Social Networking Service,’’ 2023, http:
//twitter.com. Last visited: 01/10/2023.

[18] M. Satyanarayanan, ‘‘Pervasive Computing: Vision and Challenges,’’ IEEE
Personal Communications, vol. 8, no. 4, pp. 10–17, Aug. 2001.

[19] P. Leger and M. Lazo, ‘‘Case Studies of Matcher Cells,’’ 2023, http:
//pragmaticslaboratory.github.io/matcher-cells-study-cases. Last visited:
01/10/2023.

[20] J. Brooke, Usability Evaluation in Industry. CRC Press, 1996, ch. SUS:
A ’Quick and Dirty’ Usability.

[21] A. Apostolico and Z. Galil, Eds., Pattern Matching Algorithms. Oxford,
UK: Oxford University Press, 1997.

[22] P. Leger, É. Tanter, and H. Fukuda, ‘‘An Expressive Stateful Aspect Lan-
guage,’’ Science of Computer Programming, vol. 102, no. 1, pp. 108–141,
May 2015.

[23] S. Kumar and E. H. Spafford, ‘‘A Pattern Matching Model for Misuse
Intrusion Detection,’’ in In Proceedings of the 17th National Computer
Security Conference, Maryland, USA, Oct. 1994, pp. 11–21.

[24] R. M. Karp and M. O. Rabin, ‘‘Efficient randomized pattern-matching
algorithms,’’ IBM Journal of Research and Development, vol. 31, no. 2,
pp. 249–260, 1987.

[25] R. S. Boyer and J. S. Moore, ‘‘A Fast String Searching Algorithm,’’
Communincation ACM, vol. 20, no. 10, pp. 762–772, Oct. 1977.

[26] G. Navarro and M. Raffinot, ‘‘A bit-parallel approach to suffix automata:
Fast extended string matching,’’ in Annual Symposium on Combinatorial
Pattern Matching. Springer, 1998, pp. 14–33.

[27] C. Allauzen, M. Crochemore, and M. Raffinot, ‘‘Factor oracle: A new
structure for pattern matching,’’ in Theory and Practice of Informatics:
Conference on Current Trends in Theory and Practice of Informatics, ser.
SOFSEM’99. Springer, 11 1999, pp. 295–310.

[28] P. Weiner, ‘‘Linear pattern matching algorithms,’’ in Annual Symposium on
Switching and Automata Theory, ser. SWAT’73. IEEE, 1973, pp. 1–11.

[29] U. Manber and G. Myers, ‘‘Suffix arrays: a new method for on-line string
searches,’’ siam Journal on Computing, vol. 22, no. 5, pp. 935–948, 1993.

[30] M. Crochemore and D. Perrin, ‘‘Two-way string-matching,’’ Journal of the
ACM (JACM), vol. 38, no. 3, pp. 650–674, 1991.

[31] A. V. Aho and M. J. Corasick, ‘‘Efficient string matching: An aid to
bibliographic search,’’ Communication ACM, vol. 18, no. 6, pp. 333–340,
Jun. 1975.

[32] G. Myers, ‘‘A fast bit-vector algorithm for approximate string matching
based on dynamic programming,’’ Journal of the ACM (JACM), vol. 46,
no. 3, pp. 395–415, 1999.

[33] M. Rubinchik and A. M. Shur, ‘‘Eertree: an efficient data structure for
processing palindromes in strings,’’ European Journal of Combinatorics,
vol. 68, pp. 249–265, 2018.

[34] B. Meyer, ‘‘Incremental string matching,’’ Information Processing Letters,
vol. 21, no. 5, pp. 219–227, 1985.

[35] Amazon Inc., ‘‘AWSWAF and AWS Shield Documentation,’’ 2023, https:
//aws.amazon.com/documentation/waf. Last visited: 01/10/2023.

[36] G. Springer and D. P. Friedman, Scheme and the Art of Programming.
Cambridge, MA, USA: MIT Press, 1989.

[37] H. R. Maturana and F. J. Varela, Autopoiesis and Cognition: The Realiza-
tion of the Living. Springer Science & Business Media, 2012, vol. 42.

[38] M. Martin, B. Livshits, and M. S. Lam, ‘‘Finding Application Errors and
Security Flaws Using PQL: a Program Query Language,’’ in Proceedings
of the 20th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2005). San Diego,
California, USA: ACM Press, Oct. 2005, pp. 365–383, aCM SIGPLAN
Notices, 40(11).

[39] T. Shoji, M. Takimoto, and Y. Kambayashi, ‘‘Capture of Multi Intruders
by Cooperative Multiple Robots using Mobile Agents,’’ in Internacional
Conference on Agents and Artificial Intelligence, Valletta, Malta, Feb.
2020, pp. 370–377.

[40] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, ser. Professional Computing
Series. Addison-Wesley, October 1994.

[41] W3 Techs, ‘‘Usage of Client-side Programming Languages,’’ https:
//w3techs.com/technologies/history_overview/client_side_language/all,
2019, last visited: 01/10/2023.

[42] Stackover Flow, ‘‘Developer survey results,’’ https://insights.
stackoverflow.com/survey/2021, 2021, last visited: 01/09/2022.

VOLUME 11, 2023 17

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

[43] C. W. Brown and E. A. Hardisty, ‘‘Regexex: An interactive system provid-
ing regular expression exercises,’’ in Proceedings of the SIGCSE Technical
Symposium on Computer Science Education, ser. SIGCSE ’07. NewYork,
NY, USA: Association for Computing Machinery, 2007, p. 445–449.

[44] L. G. Michael, J. Donohue, J. C. Davis, D. Lee, and F. Servant, ‘‘Regexes
are hard: Decision-making, difficulties, and risks in programming regular
expressions,’’ in IEEE/ACM International Conference on Automated Soft-
ware Engineering, ser. ASE’19, 2019, pp. 415–426.

[45] A. Bangor, P. Kortum, and J. Miller, ‘‘An Empirical Evaluation of the
System Usability Scale,’’ International Journal of Human-Computer In-
teraction, vol. 24, no. 6, pp. 574–594, 2008.

[46] D. Derisma, ‘‘The Usability Analysis Online Learning Site for Supporting
Computer programming Course Using System Usability Scale (SUS) in a
University,’’ Jun. 2020.

[47] P. Vlachogianni and N. Tselios, ‘‘Perceived Usability Evaluation of Educa-
tional Technology Using the System Usability Scale (SUS): A Systematic
Review,’’ Journal of Research on Technology in Education, vol. 0, no. 0,
pp. 1–18, 2021.

[48] G. Albaum, ‘‘The Likert Scale Revisited,’’ Market Research Society Jour-
nal, vol. 39, no. 2, pp. 1–21, Mar. 1997.

[49] M. Mota, ‘‘A Concrete Implementation of KMP Available on the NPM
Repository,’’ 2022, https://www.npmjs.com/package/kmp. Last Visited:
01/10/2023.

[50] D. Parnas, ‘‘On the Criteria for Decomposing Systems into Modules,’’
Communications of the ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

[51] P. L. Tarr, H. L. Ossher, W. H. Harrison, and S. M. S. Jr., ‘‘N Degrees of
Separation: Multi-Dimensional Separation of Concerns,’’ in International
Conference on Software Engineering, Los Angeles, USA, May 1999, pp.
107–119.

[52] H. P. Barendregt, The Lambda Calculus: Its Syntax and Semantics. North-
Holland, 1984.

[53] H. B. Curry, ‘‘Some Philosophical Aspects of Combinatory Logic,’’ in The
Kleene Symposium, J. Barwise, H. J. Keisler, and K. Kunen, Eds., 1980,
vol. 101, pp. 85–101.

[54] A. Van Deursen and P. Klint, ‘‘Domain-specific Language Design Requires
DeatureDescriptions,’’ Journal of Computing and Information Technology,
vol. 10, no. 1, pp. 1–17, 2002.

[55] K. Alkhamaiseh and S. ALShagarin, ‘‘A survey of string matching algo-
rithms,’’ International Journal of Engineering Research and Applications,
vol. 4, pp. 144–156, 08 2014.

[56] M. Farach-Colton, G. M. Landau, S. C. Sahinalp, and D. Tsur, ‘‘Optimal
spaced seeds for faster approximate string matching,’’ Journal of Computer
and System Sciences, vol. 73, no. 7, pp. 1035–1044, 2007.

[57] J. Kärkkäinen and J. C. Na, ‘‘Faster filters for approximate string match-
ing,’’ in Proceedings of the Meeting on Algorithm Engineering & Exper-
miments. USA: Society for Industrial and Applied Mathematics, 2007, p.
84–90.

[58] G. Kucherov, L. Noé, and M. Roytberg, ‘‘Multi-seed lossless filtration,’’ in
Combinatorial Pattern Matching, S. C. Sahinalp, S. Muthukrishnan, and
U. Dogrusoz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 297–310.

[59] F. P. Miller, A. F. Vandome, and J. McBrewster, Levenshtein Distance:
Information Theory, Computer Science, String (Computer Science), String
Metric, Damerau?Levenshtein Distance, Spell Checker, Hamming Dis-
tance. Alpha Press, 2009.

[60] G. Kucherov, K. Salikhov, and D. Tsur, ‘‘Approximate string matching
using a bidirectional index,’’ Theoretical Computer Science, vol. 638, pp.
145–158, 2016.

[61] G. Navarro and R. Baeza-Yates, ‘‘A hybrid indexing method for approx-
imate string matching,’’ Journal of Discrete Algorithms - JDA, vol. 1, 01
2001.

[62] A. Rafiq, M. El-Kharashi, and F. Gebali, ‘‘A fast string search algorithm
for deep packet classification,’’Computer Communications, vol. 27, no. 15,
pp. 1524–1538, 2004.

[63] W. Yang, ‘‘Mealy machines are a better model of lexical analyzers,’’
Computer Languages, vol. 22, no. 1, pp. 27–38, 1996.

[64] A. Akram Abdulrazzaq, N. Abdul Rashid, A. Hasan, and M. Abu-Hashem,
‘‘The exact string matching algorithms efficiency review,’’ Global Journal
on Technology, vol. 4, 01 2013.

[65] R. M. Karp and M. O. Rabin, ‘‘Efficient randomized pattern-matching
algorithms,’’ IBM Journal of Research and Development, vol. 31, no. 2,
pp. 249–260, 1987.

[66] S. Faro and T. Lecroq, ‘‘The exact online string matching problem: A
review of the most recent results,’’ ACM Comput. Surv., vol. 45, no. 2, mar
2013.

[67] F. Franek, C. G. Jennings, and W. Smyth, ‘‘A simple fast hybrid pattern-
matching algorithm,’’ Journal of Discrete Algorithms, vol. 5, no. 4, pp.
682–695, 2007.

[68] P. Heymann, G. Koutrika, and H. Garcia-Molina, ‘‘Fighting spam on social
web sites: A survey of approaches and future challenges,’’ IEEE Internet
Computing, vol. 11, no. 6, pp. 36–45, 2007.

[69] P. Hayati, V. Potdar, A. Talevski, and W. Smyth, ‘‘Rule-based on-the-fly
web spambot detection using action strings,’’ in Proceedings of the annual
collaboration, electronic messaging, anti-abuse and spam conference, ser.
CEAS’10, 2010.

[70] H. Alamro, C. S. Iliopoulos, and G. Loukides, ‘‘Efficiently detecting web
spambots in a temporally annotated sequence,’’ in Advanced Information
Networking and Applications. Cham: Springer International Publishing,
2020, pp. 1007–1019.

[71] U. Manber and G. Myers, ‘‘Suffix arrays: A new method for on-line string
searches,’’ SIAM Journal on Computing, vol. 22, no. 5, pp. 935–948, 1993.

[72] V. Ghanaei, C. S. Iliopoulos, and S. P. Pissis, ‘‘Detection of web spambot in
the presence of decoy actions,’’ in IEEE Fourth International Conference
on Big Data and Cloud Computing, 2014, pp. 277–279.

[73] P. Sarkar, ‘‘A Brief History of Cellular Automata,’’ ACM Computing
Surveys, vol. 32, no. 1, pp. 80–107, Mar. 2000.

[74] D. Peak, J. D. West, S. M. Messinger, and K. A. Mott, ‘‘Evidence for
Complex, Collective Dynamics and Emergent, Distributed Computation in
Plants,’’ Proceedings of the National Academy of Sciences, vol. 101, no. 4,
pp. 918–922, 2004.

[75] G. Berry and G. Boudol, ‘‘The Chemical Abstract Machine,’’ Theoretical
Computer Science, vol. 96, no. 1, pp. 217–248, 1992.

[76] W. Reisig, Petri Nets: An Introduction. Springer Science & Business
Media, 2012, vol. 4.

[77] R. Milner, A Calculus of Communicating Systems. Berlin, Heidelberg:
Springer-Verlag, 1982.

PAUL LEGER is an associate professor at Uni-
versidad Católica del Norte (Chile). His research
interests include issues related to programming
languages, software engineering, and different pro-
gramming approaches. Paul received his Ph. D in
computer science at the University of Chile. He can
be contacted at pleger@ucn.cl.

HIROAKI FUKUDA is an associate professor at
Shibaura Institute of Technology (Japan). His re-
search interests include software engineering and
distributed programming. Fukuda received a Ph. D
in computer science from the Keio University. He
can be contacted at hiroaki@shibaura-it.ac.jp.

18 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

Leger et al.: Exploring a Self-replication Algorithm to Flexibly Match Patterns

NICOLÁS CARDOZO is an associate professor
at Universidad de los Andes (Colombia). His re-
search interest include the design and implemen-
tation of programming languages for distributed
adaptive software systems. Nicolás has worked in
the implementation of dynamic distributed adapta-
tions in the smart cities domain from different per-
spectives, such as automated personalized assis-
tants and evolutionary models for dynamic adapta-
tions. Nicolás was a postdoctoral fellow at Trinity

College Dublin, and Vrije Universiteit Brussel. Nicolás received his doctoral
diploma from the Université catholique de Louvain, and Vrije Universiteit
Brussel in Belgium. He can be contacted at n.cardozo@uniandes.edu.co.

DANIEL SAN MARTÍN is an assitant professor
within the School of Engineering at Universidad
Católica del Norte, situated in Coquimbo, Chile.
His areas of expertise encompass software engi-
neering, software architecture, programming lan-
guages, and models. His educational background
includes a B.S. in Engineering Science and Com-
puter Engineering from Universidad Católica del
Norte, Chile, along with M.Sc. and Ph.D. in Com-
puter Science from Universidade Federal de São

Carlos, Brazil. Also, he has held pivotal positions as a Chief Information
Security Officer (CISO), Project Manager (PM), and Information Analyst in
both public and private sectors. He can be contacted at daniel.sanmartin@
ucn.cl.

VOLUME 11, 2023 19

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3355319

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

