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ABSTRACT
Adaptive Systems (ASs) are able to monitor their own behavior
and adapt it when quality goals are not accomplished. MAPE-K is
a reference model that provides abstractions to design ASs. Struc-
turing such systems with these abstractions brings many benefits,
some related to maintenance and some related to comprehension
of the architecture. However, many existing ASs are not designed
according to MAPE-K, making those abstractions hidden in their
architecture. Architectural Conformance Checking (ACC) is a tech-
nique for checking if the current architecture (CA) of a system is
obeying the rules prescribed by a planned architecture (PA) or even
by a reference model, like MAPE-K. In this paper we present DSL-
Remedy, a language for specifying PAs in the context of Adaptive
Systems. Our language provides adaptive-systems specific abstrac-
tions so that engineers can be more precise when describing the
planned architecture. Besides, as our DSL is ASs-specific, it incor-
porates some rules already known in MAPE-K. We have evaluated
our DSL comparing it with a general-purpose DSL and the results
show improvements in the productivity.
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1 INTRODUCTION
After years of maintenance, the architecture of software systems
tend to deviate from the architecture that was initially planned. A
possible way to check if the current implementation is becoming
different from the planned architecture (PA) is by employing Ar-
chitectural Conformance Checking (ACC) approaches, whose goal
is to detect architectural drifts in existing systems. The motivation
is obvious, if the system is deviating from its planned architecture,
its quality attributes may not be met anymore. ACC approaches
normally involve the following steps: i) specifying the PA making
evident the hierarchical compositions and the communication rules
among the architectural elements; ii) Map source-code elements of
the system to the architectural elements prescribed in the PA and
iii) Perform the checking/comparison between both [26].

Most of the existing ACC approaches are domain-independent,
i.e., they deliver canonical and domain-independent architectural
abstractions such as components, layers and modules [23, 25, 28].
So, software architects must work with these abstractions along
the whole ACC process by mapping all the source code elements
to them. However, in more specialized domains (like Adaptive Sys-
tems), domain-specific abstractions become very important and
strongly influence how systems are structured. In these cases, sys-
tems have components/abstractions with very specific responsibili-
ties, that guide how the how the architecture must be designed.

Adaptive Systems (ASs) are able to autonomously cope with dis-
turbances that can show up in the environment, within themselves
and in their quality goals [5]. MAPE-K is a well known reference
model for guiding the design of ASs [2, 11]. It prescribes the main
abstractions that must be used for architecting the adaptive parts as
well as the expected structural and communication rules between
those abstractions [11]. Although MAPE-K is well known and pro-
vides a suitable guide for architecting ASs, it is possible to find ASs
that do not follow the basic principles of MAPE-K [19, 29].

In this paper we present a language called DSL-REMEDY for
specifying Planned Architectures of Adaptive Systems. Our lan-
guage can be considered domain-specific, as it provides abstractions
that are specific of adaptive systems, such as monitors, planners,
knowledge and sensors. Our premise is that engineers can be more
precise when specifying ASs-specific elements and the whole ACC
process can be done in a more accurate way.

Besides, as our language is AS-specific, some communication
rules prescribed byMAPE-K is already incorporated in the language,
saving engineers from the tasks to write down all the rules. We
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have compared our language with another one that is not domain-
specific called DCL-KDM. The goal was to evaluate productivity of
software architects at time to specify the adaptive part of an AS.

We claim that our approach have the following advantages: i) It
enables software architects to use the domain vocabulary to specify
the PA. This allows them to focus just on the important points
of the architecture, writing more concise specifications leading to
better productivity. ii) It allows domain rules to be incorporated
in the specification and can be generated automatically, leaving
architects out of having to worry about the canonical rules.

This paper is structured as follows: Section 2 explains ASs and
ACC; Section 3 shows a robotic system to aid in the description of
the DSL; Section 4 describes DSL-REMEDY; Section 5 reports the
controlled experiment; Section 6 outlines related work and Section
7 makes concluding remarks and suggests future work.

2 BACKGROUND
2.1 Adaptive Systems and MAPE-K
ASs are systems with the capability to adapt their behavior at run-
time to changes in its execution conditions and user requirements
[13]. Nowadays they are extremely demanded in pervasive, mobile
and embedded computing environments because their execution
context requires a high degree of unpredictability and dynamism.

MAPE-K is a reference model that uses the concept of control
loops for designing ASs. MAPE-K is an acronymn for Monitor, An-
alyzer, Planner, Executor and Knowledge [22]. Figure 1 shows a
schematic view of MAPE-K that we consider as a base reference
model [11]. Normally, a system that is considered adaptive is com-
posed of the Managed Subsytem, which is the bigger base part, and
one or more Managing Subsystems, which are modules responsible
for performing the adaptations. Notice that MAPE-K is much more
devoted to design the adaptation parts than the base system itself.

Subsystem2Subsystem1Managing Subsystem

Managed Subsystem

Sensor Measured
Output

Effector

Monitor Analyzer Planner Executor

Knowledge

Reference
Input

Alternative «Conceptual»
Other Information

1..*0..*

Loop Manager Control
Loop

1..*

1..* 1..*

+symptom +request for
change

+change
plan

+use
+use

+use +use

+collect +act
+use

Model::Main

Aggregation Composition Abstraction Dependency

Figure 1: MAPE-K enriched with lower-level abstractions

MAPE-K of Figure 1 contains the conventional known abstrac-
tions and also some lower level abstractions presented by other
works (Measured Outputs, Alternatives and Reference Inputs) [1,
33, 34]. Therefore the abstractions that appear in this figure, as well
as the relations among them, are those we consider important to be
evident in the architecture of most ASs. However, it is important
to emphasize that different combinations of these abstractions are
possible, providing flexibility for architects to decide the best combi-
nation. For example, it is perfectly possible to have an architecture
with two or more control loops or with two or more monitors.

Besides the main known abstractions, there are others that are
not represented in the canonical MAPE-K model [33, 34]. These
abstractions are in a lower level of abstraction and they are im-
portant when architects are working with detailed design of the
system [33]. Notice that grey boxes indicate abstractions that are
not present in the standard MAPE-K. In the next paragraph we give
a brief description of each of these lower level abstractions.

Alternative represents a set of available options that an AS uses
for changing the system behavior [1]. Reference Inputs consists of
the concrete and specific set of values that are used to specify the
state to be achieved and maintained in the managed system [33].
Measured Outputs consists of the set of values that are measured
in the managed system. Naturally, as these measurements must be
compared to the Reference Inputs to evaluate whether the desired
state has been achieved [33].

In this work we consider MAPE-K as a base reference model for
adaptive systems. That means some rules of this reference model
must be preserved in planned architectures for adaptive systems.
Observing Figure 1, we highlight two kinds of rules: i) structural
rules and ii) communication rules. Structural rules are those related
to composition of the abstractions. For example: Loop Managers
must be inside Managing Subsystems; Monitors must be declared
within Control Loops, Sensors must be declared inside Managed
Systems and Alternatives must be declared inside Knowledge. There
is an exception related to Control Loops. They can be declared as
inside Managing Subsystems or inside Loops Managers. The latter
occurs when two or more Control Loops (not necessarily deployed
in the same location) need some kind of interaction for achieving
the adaptation goal. Every MAPE-K abstraction must be declared
within an existing Control Loop. Reference Inputs as Alternatives
must be declared within an existing Knowledge. Sensors, Measured
Outputs and Effectors must be part of a Managed Subsystem so
these abstractions just can be declared on this type of subsystems.

Regarding the communication rules, they are related on how
the abstractions are expected to communicate. They are present
in Figure 1 in two ways. The first is as UML associations tagged
with representative names. These communication rules describes
the expected communications among abstractions. They can be
considered the “must use” rules. Therefore, it is expected that Mon-
itors collect information from Sensors; Executors act over Effectors,
Analyzers and Planners perform queries in the abstractions of the
Knowledge, etc. The second form of communication rules occurs
when there is no relation among abstractions. In this case, this
means that the abstraction “must not use” others. Therefore, we
need a mechanism to specify when an abstraction is not able to
communicate to others in a explicit way and also assume that
when there is no communication rule the relationship is forbidden.
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Although the rules we have described are the canonical ones in
MAPE-K, the implementation of a DSL should be flexible enough
for software architects have the control over the specifications.

2.2 Planned Architectures in ACC Approaches
Architectural-Conformance Checking (ACC) is one of the main
activities in software quality control. The goal is to reveal relations,
constraints and other architectural rules foreseen in the Planned
Architecture (PA) that were violated by the system’s implementa-
tion [15]. Usually these violations are called drifts and occur due to
unconscious erosion of the architecture. A drift occurs when there
is a reference model (or planned architecture) to be followed, but
the current implementation of the system presents points which
diverge from the rules prescribed [17]. Architectural drifts not nec-
essarily result in dramatic problems; they may be there consciously.
However, it is advisable to be aware of them, since maintenance
activities can be compromised [24].

One of the main step of ACC approaches is the specification
of the PA which is an artifact where architectural elements and
rules must be declared. Typically this is performed by using two
different techniques: i) reflexion models [21] and iii) Constraint
languages [30]. In the first one software engineers define a high-
level model of the system based on their experience. This model is
composed of entities that will be mapped with entities of a source
model that previously was generated from the source code. In the
second one software engineers use constraint languages to declare
architectural elements and the constraints between these elements.
The language adopts a vocabulary/terminology, usually a generic
one like components, modules, subsystems, etc.

3 ADAPTIVE ROBOTIC SYSTEM
The Adaptive Robotic System aims at monitoring indoor environ-
ments following walls. It uses a light sensor for following the walls,
trying to keep a constant distance of them. The effort of the robot to
keep a constant distance from walls is controlled by a first control
loop which makes adjustments in the percentage of turning the
wheels and in the velocity. Besides, there is a slower control loop
over the first one which analyze the adjustment parameters and
change them to improve the performance of the robot. The goal is
to make the robot to move as straight as possible.

Figure 2 shows schematically the Planned Architecture for the
system. All blocks/rectangles/packages (as the bigger as the smaller
ones) represent instances of architectural abstractions available in
our DSL. By the stereotypes it is possible to see the names of the
abstractions available in the DSL. In the upper part of the figure
there is the Managing Subsystem, called adaptationManager. In
the lower part there is the Managed Subsystem, called Environ-
ment Guard Robot. For simplicity reasons, the Managed part is not
detailed, but usually this is much bigger than the Managing part.
As can be seen, the Managing aggregates just one Loop Manger
loopManager. The abstractions ManagingSubSystem and Managed-
Subsystem are “default” abstractions, as they must be presented in
any specification.
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Figure 2: Adapted UML to represent the Robotic System

In this case, the LoopManager aggregates two Control Loops,
masterLoop and slaveLoop. Each one of the Control Loops was de-
signed to have four abstractions; Monitor (parameterMonitor, slave-
Monitor), Analyzer (masterAnalyzer, slaveAnalyzer) , Planner (mas-
terPlanner, slavePlanner) and Executor (parameterExecutor, slaveEx-
ecutor). In addition, slaveLoop also contains a Knowledge abstrac-
tion called knowledge that is composed of two ReferenceInputs
(proximityReference, rotationReference and two Alternatives (strat-
egy_1, strategy_2), which represent different strategies of adapta-
tion.

TheManaged is composed of two Sensors (proximity, tachometer),
two effectors; wheels and speed, two MeasuredOutput; (distance,
angularSpeed) and a generic component called servo-controller
which is not detailed in the specification of the DSL.

There are two types of relations that can be identified in this
figure. One type is represented by the arrows among the elements -
communication rules. The another type is represented by the hier-
archical compositions among them - structural relations. The last
one occurs when element/abstraction is within another one. Figure
2 shows 26 rules of type must-use, 8 rules of type must-not-use
and when a communication rule is not present it means that the
relationship is forbidden.

4 DSL-REMEDY
DSL-REMEDY is our language for specifying planned architectures
in adaptive systems. This language is part of a more complete ACC
approach as can be seen in Figure 3. The step A is when software
architects create/specify a PA using the DSL-REMEDY and this
normally happens (but not always) at the early stages of life cycle.
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Notice that steps B and C were intentionally draw in lightgrey
indicating they are not covered in this work.
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Figure 3: REMEDY approach

The specification process is divided in three interdependent sub-
steps: i) Specify Structure of Managing Elements - When software
architects specify (Step A.1) the adaptive elements that must exist
in the system (monitor, analyzer, planner, executor, etc); ii) Spec-
ify Structure of Managed Elements - when the core elements are
specified (Step A.2) employing common architectural abstractions
(layers, components, modules, etc) and iii) Specify Communication
Rules (Step A.3).

Step B aims at obtaining a representation of the Current Ar-
chitecture (CA) of the system. Here software architects must map
the architectural elements declared in the specification (monitors,
analyzers, layers, components, modules, etc.) to the source code
elements (variables, methods, etc.). This is the moment in which
architects inform how the abstract elements are materialized in
the source code. Finally, in the step C the goal is to identify the
drifts by comparing the PA with the CA. Internally, both the PA
and CA are represented as KDM model instances [31]. REMEDY
was implemented as an eclipse plugin which provides all user in-
terfaces to support the mentioned steps. Although, we explain the
PA in three different listings for better understanding in practice
the specification of the PA must be done in one file.

4.1 Specify the Planned Architecture
4.1.1 Specify Structure of Managing Elements. In this substep soft-
ware architects must specify the elements of the Managing Sub-
system. Listing 1 shows the specification that corresponds to the
Managing Subsystem of Figure 2. Bold words indicate the keywords
of our DSL. The way the abstractions are composed follow a Java
syntax/style which defines the structural rules.

An abstraction can be composed of others or solely, then the
nomenclature to specify it follows:

[AS_Abstraction] [ID] [{..}]; | [AS_Abstraction] [ID];

Where [AS_Abstraction] is a MAPE-K abstraction and [ID] is
a unique string that identifies the abstraction in the whole specifi-
cation. Inside the brackets architects must specify the abstractions
that compound the abstraction of higher hierarchy. We intention-
ally implemented the unique abstraction ID strategy to simplify the
access to them at time of specifying communication rules.

In Line 1 one must inform a name that identifies this PA. In this
example, there is just one Managing subsystem (Line 2) and just one
Loop Manager (line 3). A Loop Manager can manage one or more
Loops and in this case there are two of them specified in the PA
(lines 5 and 12). Loops can holds several MAPE-K abstractions and
the masterLoop, which is the Loop that coordinates the slaveLoop,
has four; a parameterMonitor, a masterAnalyzer, a masterPlanner
and a parameterExecutor (lines 6-9).� �

1 Architecture EnvironmentGuardRobot-PlannedArchitecture {
2 Managing adaptationManager {
3 LoopManager loopManager {
4
5 Loop masterLoop withDomainRules{
6 Monitor parameterMonitor;
7 Analyzer masterAnalyzer;
8 Planner masterPlanner;
9 Executor parameterExecutor;
10 }
11
12 Loop slaveLoop withDomainRules{
13 Monitor slaveMonitor;
14 Analyzer slaveAnalyzer;
15 Planner slavePlanner;
16 Executor slaveExecutor;
17 Knowledge knowledge {
18 ReferenceInput proximityReference;
19 ReferenceInput rotationReference;
20 Alternative strategy_1;
21 Alternative strategy_2;
22 ...
23 }� �

Listing 1: Managing subsystem of the PA

As the robot has constrained resources, this specification enables
the decentralization of Loops to a better scalability with respect
to communication and computation. For instance, the masterLoop
could be deployed in a remote server and the slaveLoop in the robot.
Thus, the communication overhead is limited and the computa-
tional burden is spread over the two nodes [34]. The slaveLoop, is
composed of 5MAPE-K abstractions. It adds a Knowledge called
knowledge in line 17. This abstraction is composed of four abstrac-
tions (lines 18-21); proximityReference, rotationReference, strategy_1
and strategy_2. The first two are of type ReferenceInput and the
second two are of type Alternative. The proximityReference holds a
value that indicates the distance between the robot and the wall.
The rotationReference holds a value that indicates the angular speed
of wheels. Notice that Loops are specified with the keyword with-
DomainRules (lines 5 and 12) to activate domain rules of ASs
which is explained in subsection 4.1.3.

4.1.2 Specify Structure of Managed Elements. In this substep soft-
ware architects must specify elements of the Managed subsystem
that deals with the domain functionality. Listing 2 shows the speci-
fication of the Managed Subsystem of Figure 2.� �
23 Architecture EnvironmentGuardRobot-PlannedArchitecture {
24 ..
25 Managed environmentGuardRobot {
26 Sensor proximity;
27 Sensor tachometer;
28 Effector wheels;
29 Effector speed;
30 MeasuredOutput distance;
31 MeasuredOutput angularSpeed;
32 Component servo-controller;
33 }
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34 }
35 ..� �

Listing 2: Managed subsystem of the PA

Managing subsystems have communication with the Managed
subsystem by means of touchpoints which commonly are imple-
mented by sensors and effectors [11]. Line 25 declares a Managed
subsystem which in this case is composed of two Sensors (lines
26 − 27 ), two Effectors (lines 28 − 29), two MeasuredOutput (lines
30-31) and one generic component (line 32). As we can see, our
DSL provides these abstractions to be specified in the Managed
subsystem section. In literature, there are several approaches to
specify systems in a generic way by using abstractions such as
layers, components, modules and interfaces [12, 30]. Thus to our
purpose, we have started the integration of the approach developed
by Landi et al. [6] with our DSL. This also relies in KDM models
for checking the architectural conformance so it fits very well to
our intentions.

4.1.3 Specify Communication Rules. In our DSL, we opt for having
just two types of communication rules: must-use and must-not-
use. The first one means that an abstraction A must access an
abstraction B. The access type can be a callable method, objects
creation, implementation of interfaces among others. The second
one means that an abstraction A must not access an abstraction B.

Listing 3 shows the communication rules of Figure 2. Lines 41
and 42 enable the communication between masterLoop, slaveLoop
and vice-versa. The DSL automatically checks whether there are
rules that connect both abstractions or not. If it detects the absence
of rules connecting them then one or more errors will raise at
design time and PA will not generate its output. On the other hand,
if software architects specify that a Loop must not use another one
then all rules that connects both abstractions will not take into
account in the generated output of the PA. Also, it is possible to
interconnect LoopManagers which follow the same rules as Loops.� �
40 Rules{
41 loop masterLoop must-use loop slaveLoop;
42 loop slaveLoop must-use loop masterLoop;
43 monitor parameterMonitor must-use monitor slaveMonitor;
44 monitor slaveMonitor must-use monitor parameterMonitor;
45 monitor slaveMonitor must-use sensor proximity;
46 monitor parameterMonitor must-not-use sensor proximity;
47 monitor slaveMonitor must-use sensor tachometer;
48 analyzer masterAnalyzer must-use analyzer slaveAnalyzer;
49 analyzer slaveAnalyzer must-use analyzer masterAnalyzer;
50 analyzer slaveAnalyzer must-use reference-input proximityReference;
51 analyzer slaveAnalyzer must-use reference-input rotationReference;
52 analyzer masterAnalyzer must-not-use reference-input proximityReference;
53 analyzer masterAnalyzer must-not-use reference-input rotationReference;
54 planner masterPlanner must-use planner slavePlanner;
55 planner slavePlanner must-use planner masterPlanner;
56 planner slavePlanner must-use alternative strategy_1;
57 planner slavePlanner must-use alternative strategy_2;
58 planner masterPlanner must-not-use alternative strategy_1;
59 planner masterPlanner must-not-use alternative strategy_2;
60 executor parameterExecutor must-use executor slaveExecutor;
61 executor slaveExecutor must-use executor parameterExecutor;
62 executor slaveExecutor must-use effector wheels;
63 executor slaveExecutor must-use effector speed;
64 executor parameterExecutor must-not-use effector wheels;
65 executor parameterExecutor must-not-use effector speed;
66 sensor tachometer must-use measured-output distance;
67 sensor orientation must-use measured-output angularSpeed;
68 effector wheels must-use Servo-Controller;
69 effector speed must-use Servo-Controller;
70 }� �

Listing 3: Communication rules of the PA

Lines 43 − 47 specify all rules related with Monitors and their
accesses. Lines 48 − 53 specify all rules related with Analyzers and
their accesses. Lines 54 − 59 specify all rules related with Planners

and their accesses. Lines 60 − 65 specify all rules related with
Executors and their accesses and finally lines 66 − 69 specify all
rules related with Sensors, Effectors and their accesses.

Table 1 presents all the rules allowed by the DSL that can be
written by software architects. Abstractions of each column must
or must not use abstractions of each row. Notice that they can be
connected if they belong to the same level of abstraction. The only
exceptions are Monitor to Sensor, Executor to Effector, Analyzer
to ReferenceInput, Analyzer to Alternative, Planner to Alternative
and Sensor to MeasuredOutput.

𝐿𝑀
1

𝐿
2

𝑀
3

𝐴
4

𝑃
5

𝐸
6

𝐾
7

𝑆
8

✓ LM (1. Loop Manager)
✓ L (2. Loop)

✓ ✓ ✓ ✓ ✓ M (3. Monitor)
✓ ✓ ✓ ✓ ✓ A (4. Analyzer)
✓ ✓ ✓ ✓ ✓ P (5. Planner)
✓ ✓ ✓ ✓ ✓ E (6. Executor)
✓ ✓ ✓ ✓ K (7. Knowledge)
✓ S (8. Sensor)

✓ EF (9. Effector)
✓ RI (10. Reference Input)
✓ ✓ A (11. Alternative)

✓ MO (12. Measured Output)
✓: It means that an abstraction must-use or must-not-use other.

Table 1: The rules allowed by the DSL

DSL-REMEDY implements twenty domain rules that can be acti-
vated or deactivated by software architects through a user interface
provided by our plugin. These rules were obtained by means of
the analysis of the MAPE-K reference model. For instance, plan-
ners must not use monitors and vice-versa. Table 2 presents the
complete set of domain rules where⟶ represents the must-use
accesses and⟶̸ represents the must-not-use accesses. When an
AS does not conform its domain rules we will refer to this concept
as domain drift. Notice that in Listing 3 it was not necessary specify
domain rules in the DSL because they already were activated.

It is important to highlight that these rules are conceptual rules,
that means they take into account direct and indirect dependencies.
Direct dependencies occur when an abstraction uses another one
without the intervention of a third one. In this case, the relationship
is explicit in the CA. On the other hand, indirect dependencies occur
when an abstraction use another one but with the intervention
of a third one. Thus there is no explicit dependency in the CA,
nevertheless REMEDY create the implicit dependencies in order to
perform correctly the ACC.

Monitor Analyzer Planner Executor Knowledge
⟶̸ ⟶̸ ⟶̸ ⟶̸ Monitor

⟶ ⟶̸ ⟶̸ ⟶̸ Analyzer
⟶̸ ⟶ ⟶̸ ⟶̸ Planner
⟶̸ ⟶̸ ⟶ ⟶̸ Executor
⟶ ⟶ ⟶ ⟶ Knowledge

Table 2: Domain rules of ASs

As we state before, the keyword withDomainRules must be de-
clared in Loops to enable domain rules. Thus, the rules will affect all
abstractions that match with a specific rule. For instance, if a Loop
has two monitors and the rule Monitor ⟶̸ Planner is activated
then a constraint for each monitor will be generated to be checked
in the CA. Despite the DSL can load domain rules they are not
mandatory if a software architect writes a custom rule that violates
a specific domain rule. Thus it is important the implementation of
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custom validators that implement additional constraint checks of a
DSL, which cannot be done at parsing time.

DSL-REMEDY implements three types of validators. The first one
checks that abstractions do not access themselves. For instance, the
rule monitor parameterMonitor must-use monitor parameterMonitor
is forbidden. Listing 4 shows an example of this validator where
line 1 checks the monitor is not null, line 2 checks if a monitor is
accessing itself and line 3 raise the error in the corresponding line
where the rule was specified in the DSL. The same implementation
is valid for the other abstractions so we do not include them in the
document.� �

1 if (dslRuleMonitor.monitor2 !== null)
2 if (dslRuleMonitor.monitor == dslRuleMonitor.monitor2)
3 error("Check a monitor does not have dependency with itself",

SasDslPackage.eINSTANCE.DSLRuleMonitor_Monitor2 ,
DUPLICATE_MONITOR_ACCESS)� �

Listing 4: Checking if an abstraction depend on itself

The second one checks that rules can not be duplicated. In order
to implement this validator a Hash data structure is created for each
abstraction to disallow duplicate communication rules. In Listing
5, line 1 implements a for loop that iterates over the elements of
the Hash structure. In line 3, if there are duplicates then line 5 raise
errors in the corresponding lines where of duplicated rules.� �

1 for (entry:multiMapRuleMonitor2Monitor.asMap.entrySet) {
2 val duplicates = entry.value
3 if (duplicates.size > 1){
4 for (d:duplicates)
5 error("Duplicated rule",d, SasDslPackage.eINSTANCE.

DSLRuleMonitor_Monitor2 , DUPLICATE_RULES)
6 }
7 }� �
Listing 5: Checking if a communication rule is duplicated

The third one checks if communicating rules are violating do-
main constraints. Listing 6 shows an example of this kind of val-
idator that checks if a monitor must use a planner. Line 1 get the
domain rule written in the DSL and line 5 verifies if the domain
rule is deactivated through the computational support. If the rule
is presented but deactivated then a warning is raised.� �

1 var dslDomain = dslRuleMonitor.monitor.eContainer.eContents.filter(
DSLDomainRule).toList

2 if (! dslDomain.isEmpty) {
3 val queryClass = new QueryClass(MainView.getDatabaseUrl ())
4 val rule = queryClass.ruleIsActive("Monitor","Planner");
5 if (Boolean.valueOf(rule.get(1)))
6 if (dslRuleMonitor.planner !== null && dslRuleMonitor.access.equals("

must -use"))
7 warning("The rule is violating the domain rule number " + rule.get

(0), SasDslPackage.eINSTANCE.DSLRuleMonitor_Planner)
8 }� �
Listing 6: Checking if a rule is violating a domain rule

4.1.4 Technical Details. In this subsection we detailed the two out-
puts of DSL-REMEDY: The AS planned architecture and an OCL file.
The Xtend/Xtext framework provides the mechanisms for the con-
struction of templates that takes into account the grammar of the
DSL. Once these templates are implemented, the code generation is
straightforward. The PA of the AS is an instance of KDMmetamodel
which can represent several viewpoints of a system ranging from
lower-abstractions, such as source code up to higher-abstractions
such as architecture.

Listing 7 shows part of the PA as a KDM instance where line
2 declares the architectural model, line 3 declares the Managing

adaptationManager, line 4 the Loop loopManager and line 6 the
Monitor parameterMonitor.

The relationships among the architectural elements are repre-
sented by means of the AggregatedRelationship metaclass and they
are addressed by the relationships among source code elements.
Line 7 shows an example of it that enables the relationship of pa-
rameterMonitor with slaveMonitor and masterAnalyzer. This PA is
used for a graphical visualization of the architecture, and to do so
several qvt-o rules are applied on it to be transformed in a UML
component diagram.� �

1 <kdm:Segment name="Planned Architecture">
2 <model xsi:type="structure:StructureModel" name="ArchitecturalView_">
3 <structureElement xsi:type="structure:Subsystem" name="

adaptationManager" stereotype="/0/ @extension .0/ @stereotype .11">
4 <structureElement xsi:type="structure:Component" name="loopManager"

stereotype="/0/ @extension .0/ @stereotype .7">
5 [...]
6 <structureElement xsi:type="structure:Component" name="

parameterMonitor" stereotype="/0/ @extension .0/ @stereotype .0"
outAggregated ='// @model .1/ @structureElement .0/ @structureElement .0/
@structureElement .0/ @structureElement .0/ @aggregated .0 [...] ' >

7 <aggregated from='// @model .1/ @structureElement .0/
@structureElement .0/ @structureElement .0/ @structureElement .0' to='//
@model .1/ @structureElement .0/ @structureElement .0/ @structureElement
.0/ @structureElement .4' relation ='// @model .0/ @codeElement .0/
@codeElement .1/ @actionRelation .0 [...]' density='6'/>

8 </structureElement >
9 ..
10 </model>
11 </kdm:Segment >� �
Listing 7: A PA Serialized as a Structure Package Instance

Listing 8 shows a brief snippet of the OCL file generated from the
PA of Listings 1, 2 and 3 but with domain rules activated for loop_2.
Due to space restrictions, it shows one rule per section because
the whole file has more than 400 LoC. Notice that the OCL file is
composed of four sections. The first one verifies the existence of the
declared abstractions. The second one verifies the structural rules.
The third one verifies the communication rules and the fourth one
verifies domain rules that were activated by software architects.� �

1 package structure
2 -- Check the existence of AS abstractions --
3 context StructureModel
4 inv exist_parameterMonitor: Component.allInstances ()->exists(c| c.name='

parameterMonitor ' and c.stereotype ->asSequence ()->first().name = '
Monitor ')

5 -- Check structural rules of AS --
6 context StructureModel
7 inv composite_parameterMonitor: Component.allInstances ()->select(c| c.

name='parameterMonitor ' and c.stereotype ->asSequence ()->first().name
= 'Monitor ')->

8 exists(d|d.oclContainer ().oclAsType(Component).name='
masterLoop ' and d.oclContainer ().oclAsType(Component).stereotype ->
asSequence ()->first().name = 'Loop')

9 -- Check communication rules of AS --
10 context StructureModel
11 inv not_access_parameterMonitor_proximity: not AggregatedRelationship.

allInstances ()->exists(c| c.from.name='parameterMonitor ' and c.to.
name='proximity ')

12 -- Domain rules --
13 context StructureModel
14 inv domain_not_access_slaveMonitor_slavePlanner: not

AggregatedRelationship.allInstances ()->exists(c| c.from.name='
slaveMonitor ' and c.to.name='slavePlanner ')

15 endpackage� �
Listing 8: Snippet of OCL constraints file

The first rule (lines 3 − 4), verifies the existence of the Monitor
parameterMonitor. Checks if element with name parameterMon-
itor exists and if the stereotype corresponds to a Monitor. The
second rule (lines 6 − 8), verifies the composition of parameter-
Monitor in masterLoop. It checks if parameterMonitor is contained
in masterLoop. The third rule (lines 10 − 11), verifies the forbid-
den access from parameterMonitor to proximity. It will check that
there is no AggregatedRelationship between parameterMonitor and
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proximity. The fourth rule (lines 13 − 14), verifies the domain rule
𝑀𝑜𝑛𝑖𝑡𝑜𝑟 ⟶̸ 𝑃𝑙𝑎𝑛𝑛𝑒𝑟 .

5 EVALUATION
5.1 Scoping
One of the claimed benefits of using domain-specific ACC ap-
proaches is the improvement of productivity because some struc-
tural and communication rules from the domain are already known
and do not need to be specified by the architects [32]. Nevertheless,
at best of our knowledge, no controlled experiments have been
conducted that provide evidence of improved productivity when
software architects use domain-specific ACC approaches, particu-
larly in the research area of ASs.

Hence, the contribution of this section is to present a controlled
experiment that compares two different approaches/tools for ACC.
The first is DCL-KDM [6] a generic ACC approach and the second
is DSL-REMEDY, a domain-specific ACC approach for ASs. The
goal of our experiment is put in the following statement:

Analyze the architecture specification of ASs with ACC tools †
for the purpose of evaluating two different tools
with respect to their productivity
from the point of view of researchers
in the context of final-year undergraduate students in computer engineering.
†We are referring to the adaptive part of an AS.

In this context, productivity relates to cost in time, quantity
of errors and work effort required to specify the architecture of
the adaptive part of an AS. The experiment was carried out in
the context of a PhD study, involving students of the Computer
Engineering Bachelor program in a prestigious university of Chile.

5.2 Setting
The experiment was performed in one week at the end of the second
semester of 2020. The subjects of the experiment were 24 final-year
undergraduate students that had been taken software engineering,
domain-specific language and software architecture courses. The
experiment consisted of three activities with four hours of work
each day:
1. A training session was given covering the theoretical topics
of AS, software architecture and DSLs and a more practical topic
teaching REMEDY and DCL-KDM. Also, they filled a form that was
used to profile the students for dividing them in two groups of 12
students each one. Some of the questions asked to them were about
programming skills, industry experience and if they attended some
courses of the bachelor’s program related with the experiment;
2. A pilot experiment was conducted to familiarize with the arti-
facts used in the real experiment. Students signed a consent letter
and the two groups perform two architectural specification of ASs
by using REMEDY and DCL-KDM. With the provided information
by the pilot, we analyzed if the given time to complete the activity
was optimal, if students understood experiment instructions and if
the tools were used correctly.
3. The experiment was then conducted with the same format as
the pilot but different AS architecture specifications.

REMEDY can be downloaded from this repository https://tinyurl.
com/y34jyeutwhile DCL-KDM from this one 10.5281/zenodo.5136838.

5.3 Planning
5.3.1 Experimental Design. Table 3 presents the experiment design.
Students were separated in two balanced groups according to their
profile and each group performed two different assignments for
specifying ASs. Both assignments are hypothetical, specified in
UML notation, but they had the same level of difficulty and were de-
signed by taking into account well known patterns of AS [34]. Thus
it involved the creation of AS abstractions and their communication
rules.

Group First Task Second Task
G1 S-I (DCL-KDM) S-II (REMEDY)
G2 S-II (REMEDY) S-I (DCL-KDM)

Table 3: Experiment design

In the first task, Group 1 specified S-I by using DCL-KDM and
Group 2 specified S-II by using REMEDY. In the second task, Group
1 specified S-II by using REMEDY and Group 1 specified S-I by
using DCL-KDM.

Due to space restrictions we do not include the specification
diagrams, dataset and R-statistics operations for statistical analysis
but they are available in the following url: https://doi.org/10.5281/
zenodo.4626751.

5.3.2 Hypotheses Formulation. The research goal of this experi-
ment is to compare the use of DCL-KDM and REMEDY regarding
productivity in terms of time to complete an AS specification and
the number of errors made by subjects. Also, we want to know if
there are differences of perception of effort when subjects perform
architectural specifications with both tools. Therefore, the research
goal can be refined in 3 sub-goals that map to a set of hypotheses.
In particular, each sub-goal maps to a null hypothesis to be tested,
and an alternative hypothesis in favor and to be accepted if the null
hypothesis is rejected. We formulate 3 null hypotheses (𝐻0) and
three alternative hypotheses (𝐻𝛼 ):

• 𝐻01: There is no difference in time to complete an architec-
tural specification of AS by using DCL-KDM or REMEDY.

𝐻01 ∶𝜇𝑡𝑖𝑚𝑒𝐷𝐶𝐿−𝐾𝐷𝑀 = 𝜇𝑡𝑖𝑚𝑒𝑅𝐸𝑀𝐸𝐷𝑌 (1)
𝐻𝛼1 ∶𝜇𝑡𝑖𝑚𝑒𝐷𝐶𝐿−𝐾𝐷𝑀 > 𝜇𝑡𝑖𝑚𝑒𝑅𝐸𝑀𝐸𝐷𝑌 (2)

• 𝐻02: There is no difference on errors when specifying the
architecture of an AS with DCL-KDM or REMEDY.

𝐻02 ∶𝜇𝑒𝑟𝑟𝑜𝑟𝑠𝐷𝐶𝐿−𝐾𝐷𝑀 = 𝜇𝑒𝑟𝑟𝑜𝑟𝑠𝑅𝐸𝑀𝐸𝐷𝑌 (3)
𝐻𝛼2 ∶𝜇𝑒𝑟𝑟𝑜𝑟𝑠𝐷𝐶𝐿−𝐾𝐷𝑀 > 𝜇𝑒𝑟𝑟𝑜𝑟𝑠𝑅𝐸𝑀𝐸𝐷𝑌 (4)

• 𝐻03: There is no difference on effort when specifying the
architecture of an AS with DCL-KDM or REMEDY.

𝐻03 ∶𝜇𝑒 𝑓 𝑓 𝑜𝑟𝑡𝐷𝐶𝐿−𝐾𝐷𝑀 = 𝜇𝑒 𝑓 𝑓 𝑜𝑟𝑡𝑅𝐸𝑀𝐸𝐷𝑌 (5)
𝐻𝛼3 ∶𝜇𝑒 𝑓 𝑓 𝑜𝑟𝑡𝐷𝐶𝐿−𝐾𝐷𝑀 > 𝜇𝑒 𝑓 𝑓 𝑜𝑟𝑡𝑅𝐸𝑀𝐸𝐷𝑌 (6)

5.3.3 Independent and Dependent Variables. Each hypothesis re-
quires the definition of a set of independent and dependent vari-
ables, and a selection of proper metrics to measure the dependent
variables.
• Independent Variables: Independent variables are variables in the
experiment that can be manipulated and controlled. In our experi-
ment, there are two independent variables:

https://tinyurl.com/y34jyeut
https://tinyurl.com/y34jyeut
10.5281/zenodo.5136838
https://doi.org/10.5281/zenodo.4626751
https://doi.org/10.5281/zenodo.4626751
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- Techniques: The treatment used by a subject to solve an assign-
ment. This variable is the factor of the experiment that is changed
to observe the effect on the dependent variables. The two possible
values of this factor are DCL-KDM and REMEDY;
- Specifications: The problem to be solved by the subject (specifi-
cations S-I and S-II). Since the specifications have the same level
of difficulty, the specification is not considered as a factor but as a
fixed variable.
• Dependent Variables: Dependent variables are variables that we
want to study to see the effect of different treatments. For each
hypothesis, we defined the corresponding dependent variables:
- Time: The time in minutes to complete an architectural specifica-
tion of AS;
- Errors: Number of errors found after finish the architectural speci-
fication;
- Effort: Likert-type scale from 1 to 4 that denotes the perception of
effort of subjects, where 1 means easy to use and 4 very difficult.

5.4 Analysis & Discussion
5.4.1 Analysis. In total, 24 subjects provided usable data for paired
comparison of time, errors and effort. Table 4 depicts the mean
and standard deviation for the factor Tool on Time on Error and
on Effort. The values show that there is a difference between the
means but to know if they are sufficiently different we applied an
analysis of variance test.

Time Error Effort
Tool mean sd mean sd mean sd

DCL-KDM 64.75 18.43024 4.791 3.106 2.83 0.637
REMEDY 45.75 16.67920 1.291 1.122 1.70 0.624

Table 4: Mean and Sd of Time, Error and Effort

As we have 1 factor with 2 levels within-subjects (repeated mea-
sures), we applied the paired sample t-test. Also, in order to mitigate
carryover effects which introduces biases in the results we used
a full counterbalancing strategy, as is depicted in Table 3. After
applying a t-test on Orders, we got a p-value of 0.9174 that suggests
our results do not have an order effect where order itself could
cause differences of performance. The Shapiro-Wilk normality test
of residuals for subjects and subjects tools were 0.1119 and 0.06314
respectively indicating normality. The t-test paired samples on
Tools gave us a p-value of 0.00088 that means there is a significant
difference between both approaches.

Errors are a count response and often do not satisfy the assump-
tion of normality for anovas. In our case the error data for DCL-
KDM fits on a Poisson distribution with a p-value of 6.890398𝑒−06
by using the goodness–of–fit tests. On the other hand, errors of
REMEDY did not fit so we chose to apply a non-parametric analy-
sis, the wilcoxon signed-rank test. Thus the p-value after applying
wilcoxon signed-rank test was 5.722𝑒−6 that means there is signifi-
cant differences on Errors by using DCL-KDM or REMEDY.

Effort is an ordinal likert-scale response from 1 to 4 and this
psychometric scale rarely satisfies the conditions for anova so we
used again the non-parametric analysis wilcoxon signed-rank test.
The p-value was 9.537𝑒−7which indicates that there are differences
on Effort when subjects use DCL-KDM or REMEDY. Table 4 shows
the mean and standard deviation for the factor Tool on Effort. On

average, the perception of subjects is that DCL-KDM is harder to
use than REMEDY for specifying the architecture of ASs.

Therefore, based on the statistical analysis every null hypothesis
(𝐻0) is rejected with a significance level (𝛼) of 0.05.

5.4.2 Discussion. The descriptive analysis shows that there is a
clear improvement for the dependent variables when subjects use
REMEDY compared to DCL-KDM. This is confirmed by the sta-
tistical tests. On average, time is about 30% lower with REMEDY
compared to DCL-KDM. Closer examination of the specifications
performed with REMEDY reveals that subjects made use of pre-
defined domain-specific rules support when needed so this could
explain the saving time. Also, subjects that performed the specifica-
tions with DCL-KDM wrote some abstractions with different types.
The solutions with both tools can be obtained in the following
10.5281/zenodo.5136838.

For instance, DCL-KDM allows three types of abstractions; sub-
system, layer and component, where subsystem and layer can be
composed of subsystems, layers and components. Thus the choice
decision among component, layer and subsystem for an AS abstrac-
tion could affect the productivity at time to do the specification.

With regard to errors, Figure 4 shows a bar chart with the number
of errors made by subjects. When subjects used DCL-KDM the total
number of errors was 115, where 46 correspond to structural rules
(SR) and 69 to communication rules (CR). On the other hand, when
subjects used REMEDY the total number of errors was 31 and all of
them correspond to communication rules.
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Figure 4: Errors found with both tools

The main characteristic of DCL-KDM is the capability of spec-
ifying compound abstractions deeply. For instance, a subsystem
can hold layers that in turn can hold other subsystems and layers
that in turn can hold components. On the other hand, the composi-
tion of abstractions in REMEDY is well-known due to AS domain
restrictions. Therefore in copy paste operations or when the speci-
fication contains several lines of code that makes difficult to read
and understand it, subjects are more likely to make mistakes when
specifying structural rules. Moreover, we found different types of
error of communication rules in DCL-KDM such as duplicate rules
and circular rules due to lack of validation.

Regarding errors made with REMEDY all of them are related to
communication rules of low-level abstractions. A possible answer
of why this happens is because subjects made copy and paste of
the communication rules where were involved reference input ab-
stractions of different control loops. Indeed, this was a bug because
when the rule that allows access between two control loops was
absent, REMEDY did not validate accesses of abstractions of one
control loop to another with low-level abstractions. The bug was
corrected in the next version of REMEDY.

10.5281/zenodo.5136838
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Finally, concerning effort the overall score was average for REM-
EDY and difficult for DCL-KDM. We believe the results are strongly
influenced by the type of DSL. REMEDY uses an appropriate lan-
guage for the AS domain and the way it constructs the structural
rules is identical to the MAPE-K reference model which contrast
with DCL-KDM. Although, the results could be predictable we were
able to demonstrate it scientifically.

5.5 Threats of Validity
5.5.1 Threats to Internal Validity. Internal validity is the extent to
which independent variables are responsible for the effects seen to
the dependent variables. Due to global pandemic of SARS-CoV-2,
the controlled experiment was carried out online and as a conse-
quence the instructor could not verify in situ if there was any kind of
interaction among subjects about how to specify the architectures.

To reduce this threat, before experiment activities begin we
explained to them that it was not a competition so there was not
any kind of rewards for finishing in less time or having an optimal
architecture. After having analyzed their specifications (pilot and
experiment) we determine that exists heterogeneity in architecture
specifications, so if therewas any type of interaction among subjects
it did not affect the experiment.

5.5.2 Threats to Construct Validity. Construct validity is the degree
to which the operationalization of measures in the study repre-
sent the constructs in the real world. We have seen one type of
such threats; Inadequate preoperational explication of constructs.
Although researchers delivered all concepts involved in the ex-
periment to subjects, maybe the depth of contents have not been
optimal for the understanding of some subjects, this was due to
some restrictions of the number of online sessions and the time
duration of each online session.

To reduce this threat, a subject profile was performed and con-
trasted with the academic history of each participant. Moreover, a
researcher of this study was in charge of at least one course that
subjects needed to attend to participate in this experiment so in a
certain way we already known subjects competencies.

5.5.3 Threats to External Validity and Conclusion Validity. External
validity is the degree to which findings of a study can be general-
ized to other subject populations and settings. Conclusion validity
concerns generalizing the result of the experiment to the concept or
theory behind the experiment. Due to practical restrictions, we deal
with students of an undergraduate program in Computer Engineer-
ing as subjects for our study. Although students do not represent
expert software engineers, they are the next generation of software
professionals [14]. Also, it is possible the specifications does not
exists in real world applications. To mitigate this threat, the archi-
tectural specifications were designed considering patterns based
on influential papers of the area.

Finally, there is a threat concerning the reliability of time mea-
sure. We have asked the subjects to set the starting and ending time.
In this sense we could have had a problem because a subject could
forget to mark the time. To mitigate this, we use an online program
to chronometer the time. Each subject shared the chronometer so
the instructor was aware of the time spent.

6 RELATEDWORKS
In literature we found two ways to specify PAs. The first one is
by using non-extensible/generic approaches and the second one
extensible/domain-specific approaches. The main characteristic of
generic approaches is the use of a generic vocabulary to describe ar-
chitectural abstractions such as entity, layer, module and subsystem.
Moreover, some techniques use vocabulary that relies on source-
code concepts such as packages and classes to denote components
or modules for specifying the intended or planned architecture
[3, 8]. One of the first approaches developed for detecting architec-
tural violations is reflexion models [9]. This technique compare two
models; a high-level model which contains entities and relations
between these entities and a low-level model commonly created
from source code and represented as a call graph.

On the other hand, there are solutions that uses a textual no-
tation that are capable of checking rules specified in a dedicated
DSL. DCL 2.0 [27], DCL-KDM [6], TamDera [8] and InCode.Rules
[18] are designed to define constraints on code dependencies (e.g.,
accesses, declarations, extensions). Textual notation tools are char-
acterized by high usability and a well defined strict specification
language. The authors of DCL 2.0 claim that their language is more
usable than other logic inspired alternatives. Those are supposedly
based on a more complex and heavyweight notation and offer poor
performance. Other researchers recognize the difficulty that typical
users encounter when approaching solutions that require a basic un-
derstanding of logic programming [16]. Besides the mentioned ap-
proaches, architectural rules can be translated into a language based
on first order logic. The main advantage of this type of approaches
is that they are inherently extensible within the boundaries set by
the underlying language model. Users can define new concepts
by declaring and combining facts and predicates. This form of ex-
tensibility allows developers to adapt the notation to the specific
vocabulary required to describe their architecture. Nevertheless,
according to [4] the usability is compromised because these kind
of languages involves programming capabilities which typically go
beyond the skills possessed by average software engineers.

Languages like SOUL [20], LogEn [7] and SCL [10] are examples
of solutions that can be used for conformance checking. SOUL is
a Prolog-inspired internal DSL implemented in Smalltalk. A set of
predefined high-level predicates can be used to create architectural
rules or define new predicates. Pre-defined predicates are evalu-
ated using dedicated analyzers. The representation of the target
architecture can be enriched by adding new facts to the fact base.
Although we do not find in literature approaches/techniques of
ACC used in AS domain, it is clear that non-extensible and exten-
sible approaches can be used for that purpose. Regarding to non-
extensible approaches they use generic terms to specify the system
architecture where some of them use concepts near to source-code
(low-level of abstractions) and others use concepts such as subsys-
tems, components and layers (high-level of abstraction). Also, the
majority of them perform the conformance checking in systems
developed in Java.

7 CONCLUSION
We have presented DSL-REMEDY, a language to specify Planned
Architectures of Adaptive Systems. There are two moments in
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which our DSL can be employed. The first in in early stages of
development for creating the adaptive part of the architecture of
a new system. The second is in later states, for existing systems.
This happens when architects need to verify whether the adaptive
modules were designed conforming to some expected architectural
rules. In this case, an architecture specification may even not exist.

As our approach is domain-specific, software architects do not
need to create rules for checking dependencies stated by MAPE-K,
just inform which of them need to be checked. Although generic
ACC approaches have the advantage of being applied in a vast
set of systems, there some points in favor of domain-dependent
ACC approaches: i) ACC domain-independent used for specifying
the PA is not able to incorporate domain-specific rules, forcing
architects to write rules which are very common and canonical of
the domain. This waste of time could be avoided; ii) Considering
that the architects know the ASs domain, they can be much more
precise using a language which delivers the canonical abstractions
of the domain, as they already know the behavior of them.

A specific point regarding our work, that differs from other
works, is the use of an existing reference model as base for the
specification of planned architectures. Usually, ACC approaches
start the process by creating a planned architecture from scratch, i.e.,
the architects are totally free for specifying the planned architecture.
Although our DSL also allows this freedom, it has the ability for
turning on and off the rules of the adaptive domain. Therefore, the
reference model of the domain embedded in the DSL. Yet another
point is that the validators enhance the usability of our DSL. They
reduces the possibility of software architects make mistakes in the
architecture specification. Another positive point is that our DSL
is capable of generating two separate artifacts; one for check the
constraints and another one to visualize the PA architecture.

Our controlled experiment demonstrated that REMEDY improves
the productivity when specifying PA because it saves time to ar-
chitects and decreases the number of errors. Moreover, REMEDY is
capable of identifying drifts that involve low-level abstractions that
are not evident in MAPE-K. We are currently working on extending
our DSL so that it can specify not only adaptive parts, but also the
conventional and canonical parts of the whole system.
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