
The Journal of Systems and Software 149 (2019) 285–304 

Contents lists available at ScienceDirect 

The Journal of Systems and Software 

journal homepage: www.elsevier.com/locate/jss 

Evaluating the extension mechanisms of the knowledge discovery 

metamodel for aspect-oriented modernizations 

Bruno M. Santos a , ∗, André de S. Landi b , Daniel S. Santibáñez 

a , Rafael S. Durelli c , 
Valter V. de Camargo 

a 

a Federal University of São Carlos, São Carlos, SP, Brazil 
b S2IT SOLUTIONS CONSULTORIA LTDA, Araraquara, SP, Brazil 
c Federal University of Lavras, Lavras, MG, Brazil 

a r t i c l e i n f o 

Article history: 

Received 15 April 2018 

Revised 18 September 2018 

Accepted 12 December 2018 

Available online 12 December 2018 

Keywords: 

Aspect-oriented modernization 

Knowledge discovery metamodel 

Legacy systems 

Heavyweight extension 

Lightweight extension 

OMG 

a b s t r a c t 

Crosscutting concerns are an intrinsic problem of legacy systems, hindering their maintenance and evo- 

lution. A possible solution is to modernize these systems employing aspect-orientation, which provides 

suitable abstractions for modularizing these kind of concerns. Architecture-Driven Modernization is a 

more specific kind of software reengineering focused on employing standard metamodels along the whole 

process, promoting interoperability and reusability across different tools/vendors. Its main metamodel is 

the Knowledge Discovery Metamodel (KDM), which is able to represent a significant amount of system 

details. However, up to this moment, there is no extension of this metamodel for aspect-orientation, 

preventing software engineers from conducting Aspect-Oriented Modernizations. Therefore, in this paper 

we present our experience on creating a heavyweight and a lightweight extension of KDM for aspect- 

orientation. We conducted two evaluations. The first one showed all aspect-oriented concepts were rep- 

resented in both extensions. The second one was a experiment, in which we have analyzed the produc- 

tivity of software engineers using both extensions. The results showed that the heavyweight extension 

propitiate a more productive environment in terms of time and number of errors when compared to the 

lightweight one. 

© 2018 Published by Elsevier Inc. 

1

 

o  

n  

n  

o  

g  

t  

c  

s  

a

 

t  

m  

C

(

u

r  

l  

2

 

t  

t  

o  

b  

C

 

t  

m  

2  

t  

l

h

0

. Introduction 

For software systems to keep meeting the requirements previ-

usly established it is necessary constant evolution or they will

o longer fulfill their role properly ( Lehman, 1996 ). Many orga-

izations have systems that, despite presenting the phenomena

f erosion and aging, still provide significant value for the or-

anizations. These systems are usually referred to “legacy sys-

ems”. The erosion and aging consists in a system’s detrition in

onsequence of successive and bad managed modifications in the

ource-code ( Visaggio, 2001; Bianchi et al., 2003; Pérez-Castillo

nd Piattini, 2011 ). 

For some organizations, the complete substitution of their sys-

em has a high risk and consumes a large amount of resources,

aking this alternative unfeasible. On the other hand, system
∗ Corresponding author at: Computer Department, Rodovia Washington Luis, São 

arlos, 13565-905 SP, Brazil. 

E-mail addresses: bruno.santos@ufscar.br (B.M. Santos), andre.landi@s2it.com.br 

A.d.S. Landi), daniel.santibanez@ufscar.br (D.S. Santibáñez), rafael.durelli@dcc. 

fla.br (R.S. Durelli), valtervcamargo@ufscar.br (V.V. de Camargo). 

p  

c  

o

ttps://doi.org/10.1016/j.jss.2018.12.011 

164-1212/© 2018 Published by Elsevier Inc. 
eengineering is an alternative that is able to extend the system’s

ife cycle and it is more feasible economically ( Pérez-Castillo et al.,

011 ). 

However, traditional reengineering processes lacks formaliza-

ion and standardization on how to develop tools and how to make

hem work together, leading software engineers to create their

wn proprietary solutions, which are difficult (or even impossi-

le) to be reused, hindering the productivity of the team ( Pérez-

astillo et al., 2011 ). 

In 2003, the Object Management Group (OMG) 1 created a

ask force to evolve the traditional reengineering processes, for-

alizing and preparing them to be supported by models ( OMG,

009, 2016 ). Therefore the term Architecture-Driven Moderniza-

ion (ADM) came out as a solution to the standardization prob-

em ( OMG, 2009, 2016 ). 

Architecture-Driven Modernization advocates modernization 

rocesses must employ MDA (Model-Driven Architecture) con-

epts along the process: Platform-Specific Model (PSM), Platform-
1 OMG is an international organization that approves open standards to object 

riented applications since 1989. 

https://doi.org/10.1016/j.jss.2018.12.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.12.011&domain=pdf
mailto:bruno.santos@ufscar.br
mailto:andre.landi@s2it.com.br
mailto:daniel.santibanez@ufscar.br
mailto:rafael.durelli@dcc.ufla.br
mailto:valtervcamargo@ufscar.br
https://doi.org/10.1016/j.jss.2018.12.011


286 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

m  

o  

e  

t  

w  

S  

w

2

 

n  

c  

O  

t  

a  

a  

a

 

p  

v  

a  

e  

a  

t  

M  

i  

t  

o

 

i  

C  

t  

i  

p  

fi  

h

 

p  

m

 

A  

T  

t  

r  

p  

t

 

i  

o  

(  

t  

p  

p  

2

2 Formal specification of KDM: https://www.omg.org/spec/KDM/About-KDM/ . 
Independent Model (PIM) and Computational-Independent Model

(CIM). The goal is to rise the abstraction level to work in a

technology-independent manner. Thus, the main idea is to repre-

sent the system to be modernized in models and conduct analysis

and transformations on these models ( Pérez-Castillo et al., 2011 ). 

The Knowledge Discovery Metamodel (KDM) is the main ADM

metamodel and its goal is to represent all systems characteris-

tics, from low level details (like lines of code and programming

structures) to higher level concepts (like architectural modules and

business processes). In fact, KDM can be seen as a multimodel

since it incorporates other metamodels and each one is responsible

for representing a different system view. 

Originally (and purposely) KDM does not include metaclasses

for specifying particular domains or technologies, such as web

services, multi-agent systems and aspect-oriented programming

(AOP). However, it can be adapted in two different ways. The first

one is by extending it in a lightweight (LW) manner by using

stereotypes and tag values. The second one is by extending it in

a heavyweight (HW) manner by changing the metamodel creating

new metaclasses and/or modifying the existing ones. 

When a legacy system presents modularization problems, usu-

ally due to the presence of crosscutting concerns, a candidate tech-

nology to be used in the modernization process is aspect-oriented

software development (AOSD). AOSD is a relevant development

methodology that has a significant impact on the community re-

search and it also has a great number of publications around the

world ( Kulesza et al., 2013 ). There are also publications that re-

ports on real usage of AOSD in industrial projects ( Lesiecki, 2006;

Hohenstein and Jäger, 2009 ). Important frameworks such as Spring

and JBoss utilize aspect-oriented concepts, for example, a typical

application might have a security policy that prevents a user from

executing a number of operations unless the user has the correct

privileges. 

Even though the current KDM was devised to be a com-

mon intermediate representation for existing software systems

its current version does not support the specification and in-

stantiation of aspect-oriented concepts during modernization pro-

cesses ( Durelli et al., 2014b ). Nowadays, KDM neither contain spe-

cific metaclasses nor stereotypes to fully support and represent

aspect-oriented concepts such as: join points, advices, aspects, etc.

Moreover, we observe lack of studies in literature about: ( i )

representation of AOP in KDM ( Shahshahani, 2011 ) and ( ii ) com-

parisons between different extension mechanisms of KDM. Re-

garding the first point, this lacking makes aspect-oriented mod-

ernizations an error-prone activity. This happens because the ab-

sence of specific metaclasses for representing aspect-oriented con-

cepts needs to be compensated by representing the same aspect-

oriented concepts using canonical metaclasses and trying to differ-

entiating them somehow. This clearly can lead to misunderstand-

ings and the insertion of errors. 

In order to overcome these limitations in this paper we pro-

posed two KDM extension for AOP – a lightweight and a heavy-

weight. By using these extension, the modernization into object-

oriented systems to aspect-oriented ones becomes feasible, since it

is possible to represent the aspect-oriented concepts (join points,

advices, aspects and others) in a clear way in the KDM instance

that represents the aspect-oriented version of the system. Another

goal is to investigate both extensions, showing evidences of their

suitability. To support this goal, a comparative study was per-

formed to list the advantages/disadvantages and main differences

between both extensions. 

Summing up, the primary contribution of this article is to re-

port the experience we have gained from creating both a LW and

a HW Aspect-Oriented Extension of KDM. The secondary contri-

bution is the experiment we have conducted whose goal was to

answer the following Research Question (RQ): 
RQ – Which of the KDM AOP extensions (LW or HW) requires 
less effort (time) and leads to less errors when creating and 

maintaining their instances? 

In the following, we present the background related to ADM

nd KDM, extension alternatives for KDM and aspect-oriented

odernization scenario. Then, in Section 3 we present the aspect-

riented extensions of KDM. After, in Section 4 we discuss the

valuation of the approach. In Section 5 we discuss about threats

o validity of our research. In Section 6 we describe some related

orks, Section 7 presents the lesson learned herein, and finally in

ection 8 we draw some conclusions and describe plans for future

ork. 

. ADM & KDM 

Architecture-Driven Modernization (ADM) is a trend of reengi-

eering processes that considers standard metamodels and MDA

oncepts (like PIM, PSM and CIM) along the process. According to

MG, the main reason of this problem is the lack of standardiza-

ion, hindering the productivity of teams, preventing the reuse of

lgorithms and techniques and also compromising the interoper-

bility among modernization tools from different vendors ( Ulrich

nd Newcomb, 2010; Sadovykh et al., 2009 ). 

The modernization process supported by ADM involves three

hases and it is similar to a horseshoe ( Kazman et al., 1998 ): ( i ) re-

erse engineering, ( ii ) restructuring, and ( iii ) forward engineering,

s can be seen in Fig. 1 . Starting from the lower left side, in reverse

ngineering part, the knowledge is extracted from legacy systems

nd PSM is generated. The PSM is used as a base to generate a PIM

hat conforms to an ADM metamodel named Knowledge Discovery

etamodel. After obtaining the PIM, one can generate the CIM go-

ng up to the level of abstraction. Thus, during reverse engineering,

ransformations are done aiming to get a high-level representation

f the system, independently of the adopted platform. 

In restructuring phase, it is possible to conduct refactor-

ng ( Durelli et al., 2017, 2014a ), optimization ( Landi et al., 2017;

hagas et al., 2016 ), and also insert new business rules in the sys-

em. Please note that this restructuring phase can be performed

n any level of the horseshoe (PSM, PIM and CIM level). The out-

ut is a new target model without the problems previously identi-

ed, which can be called “a modernized model” in any level of the

orseshoe. 

In the sequence, we can proceed to the forward engineering

hase, wherein the models are resubmitted to a set of transfor-

ations to reach the source-code level again. 

The PIM and CIM abstractions can be represented by the main

DM metamodel, called Knowledge Discovery Metamodel (KDM) 2 .

he KDM is a metamodel of common intermediate representation

o existent systems and its operating environments. Using this rep-

esentation it is possible exchange systems representation between

latforms and languages aiming to analyze, to standardize, and to

ransform existing systems ( OMG, 2016 ). 

The KDM can represent physical and logical software artifacts

n different abstractions levels and it is formed by twelve packages

rganized in four layers: ( i ) infrastructure, ( ii ) program elements,

 iii ) runtime resources, and ( iv ) abstractions. In Fig. 2 it is shown

he KDM architecture with its layers (right side) and the internal

ackages, which can also be seen as sub-metamodels because each

ackage represents a different system’s view ( Normantas et al.,

012 ). 

https://www.omg.org/spec/KDM/About-KDM/


B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 287 

Fig. 1. Process flow of modernization supported by ADM ( Pérez-Castillo et al., 2011 ). 

Fig. 2. KDM’s architecture. Adapted from Pérez-Castillo et al. (2011) . 

 

i  

r  

f  

t  

P

2

 

i  

s  

c  

l  

t

 

r  

b  

a  

m

 

m  

t  

s  

Table 1 

Mapping between code elements and the KDM Meta- 

classes. 

Code element Metaclass 

Class ClassUnit 
Interface InterfaceUnit 
Method MethodUnit 
Attribute MemberUnit / StorableUnit 
Parameter ParameterUnit 
Association KdmRelationship 

i  

f

2

 

p  

i  

F  

e

 

fi  

t  
In this paper, the main goal is to represent the AOP concepts

n KDM. To develop a Heavyweight (HW) KDM extension that rep-

esents the AOP concepts it is necessary extend some metaclasses

rom Code package, located in programs elements layer. Regarding

he Lightweight (LW) extension, the package to be used is the Kdm

ackage from infrastructure layer. 

.1. Code package 

The Code package defines a set of metaclasses, whose purpose

s to represent implementation-level program units and their as-

ociations. The package also includes metaclasses that represent

ommon program elements supported by various programming

anguages, such as: data types, classes, procedures, macros, proto-

ypes, and templates. 

In a given instance of KDM, each element of the Code package

epresents some construct in a programming language, determined

y the programming language used in the system. The Code Pack-

ge consists of 24 classes and contains all the abstract elements for

odeling the static structure of the source code. 

In Table 1 is depicted some of them. This table identifies KDM

etaclasses possessing similar characteristics to the static struc-

ure of the source code. Some metaclasses can be direct mapped,

uch as class and interface from OO language, which can be eas-
ly mapped to the ClassUnit and InterfaceUnit metaclasses

rom KDM. 

.2. Kdm package 

Kdm package describes several infrastructure elements that are

resent in each KDM instance. Together with the elements defined

n the Core package these elements constitute the so-called KDM

ramework. The remaining KDM packages provide meta-model el-

ments that represent various elements of existing systems. 

Kdm package is a collection of classes and associations that de-

ne the overall structure of KDM instances. From the infrastruc-

ure perspective, KDM instances are organized into segments and



288 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

Fig. 3. Lightweight extension metaclasses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

o  

t  

m

 

t  

v  

e

 

o  

S

 

t  

h  

m  

c

2

 

e  

i  

N  

S  

g

 

c  

A  

s  

b  

A  

i  

n  

l

 

w  

s  

c  

a  

i  

u  

s  

b

then further into specific models. Kdm package consists of the fol-

lowing five class diagrams: ( i ) Framework – defines the basic el-

ements of the KDM framework, ( ii ) Audit – defines audit infor-

mation for KDM model elements, ( iii ) Annotations - provides user-

defined attributes and annotations to the modeling elements, ( iv )

Extensions - a class diagram that defines the overall organization

of the lightweight extension mechanism of KDM, and ( v ) Extend-

edValues - the tagged values used by the lightweight extension

mechanism. We have used the last two class diagrams to create

the lightweight extension mechanism presented herein. 

2.3. Extension alternatives for KDM 

As already stated there are two ways of extending KDM: ( i )

lightweight (LW) and ( ii ) heavyweight (HW). In the following sub-

sections we detail each of them. 

2.3.1. Lightweight extensions 

The KDM has a package called “Kdm” that involves a set

of metaclasses for creating lightweight extensions by means of

stereotypes and tagged values. Part of the class diagram of Kdm

Package can be seen in Fig. 3 . 

The ExtensionFamily metaclass acts as a container for en-

capsulating a set of related stereotypes. The Stereotype meta-

class represents stereotypes, which are ways of annotating meta-

class instances so that they can represent a concept different

from the original meaning. The TagDefinition metaclass rep-

resents the stereotype tags, which are used for adding attributes

in the stereotypes. The ExtendedValue metaclass defines com-

mon properties to TaggedValue and TaggedRef and represents

the value of an attribute. 

The precise meaning of each new stereotype is defined out of

the KDM scope and it should be informed by the developers so

the users could properly use the extended representations. 

The LW KDM extension mechanism neither allow tags multi-

plicity, tags constraints, nor relationship between tags and stereo-

types. Thus, the engineer responsible for the extension creation

should choose the most specific metaclass to define the stereotype

with the semantics between the element to make sure that the

stereotype make sense. 

2.3.2. Heavyweight extensions 

Heavyweight extensions consists of creating (or modifying the

existing ones) new metaclasses and incorporate them in the meta-
odel. Most of the time, the new metaclasses extend the existing

nes. Usually, heavyweight extensions are much more expressive

han lightweight ones, but they hinder the reusability of the meta-

odel instances. 

The creation of a heavyweight KDM extension does not require

he existence of a specific package, as occurs in the lightweight

ersion. It is just necessary to create new metaclasses of modifying

xisting ones. 

Besides, one can devise metaclasses in any KDM package, i.e.,

ne can devises new metaclasses in the Code package, or in the

tructure package, etc. 

In the context of this work, the Code KDM package is the cen-

ral package for the heavyweight extension we have created. This

appens because all the concepts we have created were imple-

entation concepts thus the only package that these new concepts

ould fit was Code package. 

.4. Aspect-Oriented modernization scenario 

According to Pérez-Castillo and Piattini (2011) there are sev-

ral modernization scenarios that can be conducted to modern-

ze legacy systems: Platform Migration, Application Improvement,

on-Invasive Application Integration, Data Architecture Migration,

ervice-Oriented Architecture Transformation, Language to Lan-

uage Conversion, and Paradigm to Paradigm migration. 

The scenario we are dealing herein is the last one since we are

oping with modernizations from Object-Oriented (OO) system to

spect-Oriented (AO) ones. It is important to highlight that, in this

cenario, it is not mandatory changing the language, i.e., it is possi-

le to convert OO systems to AO versions using the same language.

lthough not common and, possibly this is not the best alternative,

t can be performed using dependency injections and other alter-

ative strategies. The most normal way is to use an aspect-oriented

anguage, like AspectJ ( Kiczales et al., 1997 ). 

The aspect-oriented modernization scenario we are working

ith is shown in Fig. 4 . In the left lower part, we can find a legacy

ystem with modularization problems, i.e., there are some cross-

utting concerns (light gray, dark gray, and black) bad modularized

s they are spread throughout the system modules. The modern-

zation goal is to get an aspect-oriented version in which the mod-

larization problems are solved. This is represented by the target

ystem, in which the concerns are now well modularized, as can

e seen in the low right part. 



B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 289 

Fig. 4. Aspect-oriented modernization scenario. 

 

n  

a  

a  

w

 

c  

i  

c  

e  

t  

b  

t

 

K  

m  

c  

o  

t  

l

 

n  

o  

w  

t  

p  

f  

t  

n  

t  

t

 

A  

w  

r  

e

l  

K  

i  

b  

“  

d

3

 

o  

t  

A  

a  

e  

e  

t  

p  

o  

b  

W

 

i  

m  

t  

c  

t  

i  

o  

t  

f

 

w  

b  

s  
As any other modernization scenario, it starts by reverse engi-

eering the system into a KDM instance that represents the system

s is, i.e., a representation of the system with the same spreading

nd scattering problems presented in the source code. This model

ill be called here as “Legacy KDM”. 3 

As soon as the legacy KDM is recovered, a concern mining pro-

ess it is needed for identifying the source code elements (present

n the KDM model) that contribute to the implementation of the

oncerns. This mining process also needs to annotate these el-

ments in the KDM. This process is represented as a gear and

he output is the annotated KDM. An example of a tool that can

e used in this step is the CCKDM 

4 , proposed by Martín San-

ibáñez et al. (2015) . 

In the sequence, the restructuring phase gets the annotated

DM as input and performs aspect-oriented refactorings on this

odel. The output is a new modernized KDM instance with the

oncerns modularized with aspect-oriented abstractions. The goal

f the restructuring phase is to analyze the annotated elements of

he legacy KDM and creating aspect-oriented abstractions that al-

ow a better modularization of those concerns. 

In the scenario presented in Fig. 4 , an AO KDM Extension is

eeded for representing the output of the restructuring phase. This

ccurs because the AO refactorings get OO elements and need to

rite AO ones, thus, the AO abstractions must be available in this

arget model. This situation happens with any other modernization

rocess that reads specific element and needs to write/create a dif-

erent element, which it is not present in the original version of

he metamodel. Therefore, as can be seen in the figure, the origi-

al version of KDM supports the phases prior the restructuring and

he AO Extended version supports the activities after the restruc-

uring. 

The icon represented by an arrow and a circle shows when the

O concerns are used. The first time shows the modified KDM

ith aspect-oriented concepts, the second time represents some

efactorings using the KDM-AO metamodel, and the third time il-
3 Please note that in this section, we use double quotes (“ ”) to reference the 

lements in the Fig. 4 . 
4 Available in: https://github.com/dsanmartins/cckdm . 

e  

s

ustrates the target KDM instance that is the refactored system in

DM model. Note that the others parts of the figure are not treated

n this paper. Also note that the “Recovering Process” is executed

y an existing tool called MoDisco 5 ( Bruneliere et al., 2010 ) and the

Mining Process” is executed by CCKDM tool that was previously

eveloped by Martín Santibáñez et al. (2015) . 

. Aspect-oriented extensions of KDM 

This section presents the two KDM extensions we have devel-

ped - the lightweight and the heavyweight. The creation of these

wo KDM extensions had as the starting point an UML profile for

OP proposed by Evermann (2007) . Evermann’s profile is a well

ccept and used profile in the academic area but we also consid-

red other approaches to compose ours ( Soares et al., 2002; Rausch

t al., 2003; Júnior et al., 2010 ). One of the distinguishing charac-

eristics of the AO UML profile proposed by Evermann is the com-

leteness. It covers most of the AspectJ elements, concentrating not

nly on the basic concepts, like Aspects, Pointcuts and Joinpoints,

ut also the different types of pointcuts (PreInitialization Pointcuts,

ithintCode Pointcut, etc) and intertype declarations. 

Please note that both extension presented herein are devised

n meta-level. More specifically, in the heavyweight extension new

etaclasses (representing aspect-oriented concepts) are added in

he metamodel. These new metaclasses (representing the AO con-

epts) extend existing KDM metaclasses. In lightweight extension,

here is no inclusion of new metaclasses or modifications of exist-

ng ones in the metamodel. The extension here is done by means

f the creation of stereotypes and tagged values, but it is also in

he meta-level, since the set of stereotypes created are available

or all KDM instances. 

In Fig. 5 there is a class diagram that presents both extensions

e have created – the light and the heavy one. This picture has

een adapted from Evermann (2007) and it is used here to repre-

ent both the new metaclasses we have created in the heavyweight

xtension and also the new stereotypes of the lightweight exten-
ion. 

5 Available in: https://www.eclipse.org/MoDisco/ . 

https://www.github.com/dsanmartins/cckdm
https://www.eclipse.org/MoDisco/


290 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

Fig. 5. Light and heavyweight extensions. Adapted from Evermann (2007) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

i

 

a  

w  

h  

c  

t  

c  

l  

b  

a  

v  

s

 

i  

m  

i  

C  

e  

i  

c

 

c  

b  

f  

s  

w  

d  

f  

s  
As can be seen in Fig. 5 , each class has four lines in the first

compartment. The first word represents the name of the meta-

class we have created in heavyweight extension. For example,

AspectUnit is a new metaclass we have created in the heavy-

weight extension. The second word, in brackets, is the KDM meta-

class that was chosen to serve as the base class of the current el-

ement. For example, the new AspectUnit metaclass extends the

ClassUnit metaclass from KDM ( Santos et al., 2014b ). 

In lightweight extensions there is not addition of new meta-

classes, just the creation of stereotypes. In order to represent this

in Fig. 5 , there is a << stereotype >> symbol in the third line

of the element. Therefore, all stereotypes shown in Fig. 5 exist in

the lightweight extension. Stereotypes only can be applied on ex-

isting metaclasses, thus the name of the element that the stereo-

type can be applied to is presented in second line. For example, the

stereotype << aspect >> can only be applied in ClassUnit in-

stances. 

In order to provide a different visualization of the extensions,

the Table 2 shows the complete list of metaclasses (heavy) and

stereotypes (light) created. The first column represents all the

metaclasses created in KDM metamodel to materialize the heavy-

weight extension and the second column represents all the stereo-

types of the lightweight extension. The third column represent the

original KDM metaclasses used as base for both extensions. 

One of the biggest challenges when extending metamodels is

to choose which metaclass is the most suitable one. As the stereo-

types of Evermann’s profile had already been previously mapped

to UML metaclasses, we decided to take a deeper look and ana-

lyze if this information could be useful. As there are some simi-

larities between UML and the KDM Code Package, the information

was useful. However, to systematize this analysis, we built a map-
ing between both metamodels (UML and KDM), that can be seen

n Table 3 . 

This mapping shows a semantic correspondence between KDM

nd UML metaclasses. In some cases, the mapping is straightfor-

ard, such as Class from UML and ClassUnit from KDM. They

ave the same goal of representing classes in an object-oriented

ontext. However, as KDM can represent higher and lower abstrac-

ion levels than UML, some UML metaclasses do not have just one

andidate in KDM. Besides, there are others that have no equiva-

ent. The Property UML metaclass, for example, has three possi-

le candidates metaclasses in KDM: StorableUnit , ItemUnit ,
nd MemberUnit . StorableUnit represents primitive type

ariables, ItemUnit represents records, and MemberUnit repre-

ents associations with others classes. 

This semantic gap happens because the KDM code package

s in a lower abstraction level than UML. There are also KDM

etaclasses that do not have corresponding metaclasses in UML,

n consequence of the low abstraction level. For example, the

odeAssembly metaclass is a metaclass that represents a logical

lement container, written in machine language, that were build

n a specific operating system or hardware. There is no UML meta-

lass for representing this concept. 

Table 2 we can see the existing relation between the meta-

lasses and also comments about them. As KDM is a metamodel

roader than UML, many relations consider only the code package

rom KDM, because this package is the only one that can repre-

ent classes, attributes, methods, relationship and others elements

ith static features. Other KDM packages are concentrated in other

imensions that are also present in UML 2.0, such as user inter-

aces, architecture, and conceptual abstractions, but KDM was de-

igned to support the modernization process. To attend to one of



B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 291 

Table 2 

Aspect-oriented LW and HW mapping elements. 

AO metaclasses (Heavyweight) AO stereotypes and tags (Lightweight) Base KDM metaclass 

AspectUnit aspectUnit ClassUnit 

PointCutUnit pointCutUnit MemberUnit 

CompositePointCutUnit compositePointCutUnit MemberUnit 

OperationPointCutUnit operationPointCutUnit MemberUnit 

WithinCodePointCutUnit withinCodePointCutUnit MemberUnit 

ExecutionPointCutUnit executionPointCutUnit MemberUnit 

CallPointCutUnit callPointCutUnit MemberUnit 

PreInitializationPointCutUnit preInitializationPointCutUnit MemberUnit 

InitializationPointCutUnit initializationPointCutUnit MemberUnit 

PropertyPointCutUnit propertyPointCutUnit MemberUnit 

GetPointCutUnit getPointCutUnit MemberUnit 

SetPointCutUnit setPointCutUnit MemberUnit 

AdviceExecutionPointCutUnit adviceExecutionPointCutUnit MemberUnit 

PointCutPointCutUnit pointCutPointCutUnit MemberUnit 

CFlowPointCutUnit cFlowPointCutUnit MemberUnit 

CFlowBelowPointCutUnit cFlowBelowPointCutUnit MemberUnit 

TypePointCutUnit typePointCutUnit MemberUnit 

WithinPointCutUnit withinPointCutUnit MemberUnit 

ExceptionPointCutUnit exceptionPointCutUnit MemberUnit 

StaticInitializationPointCutUnit staticInitializationPointCutUnit MemberUnit 

TargetPointCutUnit targetPointCutUnit MemberUnit 

ArgsPointCutUnit argsPointCutUnit MemberUnit 

ThisPointCutUnit thisPointCutUnit MemberUnit 

ContextExposingPointCuitUnit contextExposingPointCuitUnit MemberUnit 

CrossCuttingConcern crossCuttingConcern Package 

SetAdviceExecution adviceExecutionType (tag) TaggedValue 

SetPointCutCompositionType pointCutCompositionType (tag) TaggedValue 

SetAspectInstantiationType aspectInstantiationType (tag) TaggedValue 

StaticCrossCuttingFeature staticCrossCuttingFeature Datatype 

AdviceUnit adviceUnit ControlElement 

Table 3 

Mapping UML - KDM. 

UML KDM Comments 

Class ClassUnit The metaclass Class from UML intends to represent the same concept of the ClassUnit metaclass 

from KDM. The metaclass Class (UML/ Basics package) has four properties: isAbstract, 

ownedProperty[ ∗], ownedOperation[ ∗] and superClass. The ClassUnit element, from Code Package 

encompasses all of these properties through the AbstractCodeElement class. A ClassUnit may have 

any attribute whose type is a concrete class of AbstractCodeElement, like StorableUnit, 

MemberUnit, ItemUnit, MethodUnit, CommentUnit, KDMRelationships, etc. 

Operation MethodUnit The semantic of the Operation metaclassfrom UML is closer to the MethodUnitmetaclass from 

KDM. This happens beauseOperation (UML/Basics package) is a behavioralelement that has the 

following properties: class(specifies the owner class), ownedParameter(Operation’s parameters) 

and raisedException(Operation’s exceptions). The MethodUnit class is the ideal element to 

represent Operations because itis a behavioral KDM element capable to representthe most diverse 

programming languages operations.MethodUnit has attributes like kind (defines the kindof the 

operations, for example: abstract, constructor,destructor, virtual, etc.) and export (defines the 

accessmodifiers, for example: public, private and protected). 

Property StorableUnit; 

ItemUnit; 

MemberUnit 

Property (UML) represents variables in general (local variables, global variables, arrays, 

associations, etc.),while KDM has an element for each kind of Property: primitive type variable 

(StorableUnit), records and arrays (ItemUnit) class members (MemberUnit). 

Package Package A Package in UML (Basics package) is very similarly to a KDM Package (Code Package). Both are 

containers for program elements, like classes, and others code elements. A Package could have one 

or more classes, and a class could have many others elements, like methods, properties, 

comments, etc. 

StructuralFeature DataElement StructuralFeature (UML/Core::Abstractions package) is an abstract metaclass that can be specialized 

to represent a structural member of a class, like a property. The KDM has the DataElement class 

(Code package), that can be specialized to StorableUnit, MemberUnit or ItemUnit. 

BehavioralFeature ControlElement BehavioralFeature (UML/Core::Abstractions package) is an abstract metaclass that can be 

specialized to represent behavioral members of a class. The equivalent class on KDM is the 

ControlElement, an abstract class that can be specialized to represent callable elements, including 

behavioral elements like MethodUnit. 

Parameter ParameterUnit Parameter (UML/ Core:Abstractions) is an abstract metaclass to represent the name and the type 

of the element that will be passed by parameter in a behavioral element. On the KDM we can use 

the ParameterUnit class. This metaclass can also represent the name, type, position of the 

parameter in the signature and the kind of parameter (value or referece). 

Relationship KDMRelationship Both Relationship and KDMRelationship metaclasses are abstract metaclasses that can be 

specialized to represent some kind of relationship between two elements, like Aggregation, 

Generalization, etc. 



292 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

1 ExtensionFamily AspectConcepts = KdmFactory.eINSTANCE.createExtensionFamily

();

2 Stereotype AspectUnit = KdmFactory.eINSTANCE.createStereotype ();

3 AspectConcepts.getStereotype ().add(AspectUnit);

4 AspectUnit.setName("AspectUnit");

5 AspectUnit.setType("ClasUnit");

6 TagDefinition IsPrivileged = KdmFactory.eINSTANCE.createTagDefinition ();

7 AspectUnit.getTag ().add(IsPrivileged);

8 IsPrivileged.setTag("isPrivileged");

9 IsPrivileged.setType("boolean");

10 [...]

Listing. 1. Creating the AspectUnit stereotype. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

r  

s  

i  

p

3

 

c  

p  

c  

e  

a  

e  

s  

a

 

m  

c  

P  

e

 

c  

c  

E  

f  

m  

p  

e

 

a  

t  

t  

n  

l

 

e  

C  

t  

m  
our goals, this mapping table shows only the main elements that

were used in the aspect-oriented KDM extensions (KDM AO Exten-

sion), once the full mapping of the ninety metaclasses from code

package would be infeasible. Nevertheless, all the classes from Ev-

ermann’s profile were mapped and are represented in Table 3 . In

our website 6 we provide others mapping tables developed by us. 

3.1. The lightweight AO extension 

This subsection shows how we have created the Lightweight

AO extension ( Santos et al., 2014a ). In this research the LW ex-

tension was created programmatically by using Java language in

the Eclipse IDE (Integrated Development Environment). As previ-

ously commented, KDM provides a set of metaclasses in a package

called kdm that allows the creation of stereotype families, stereo-

types, and tagged values, as shown in Fig. 3 . Stereotype families

are a kind of container for a light weight extension. 

In Listing 1 is shown part of the whole source code of the LW

KDM AO Extension. In this listing, only the source code for cre-

ating the AspectUnit stereotype is shown. It is possible see the

creation of three instances in Kdm Package: ExtensionFamily ,
Stereotype and TagDefinition . In line 1 it is shown the

creation of an instance of ExtensionFamily element named

AspectConcepts . This element encapsulate all the created

stereotypes to the lightweight KDM AO profile. In the second line

an instance of Stereotype element is shown and it is possible

to see the creation of AspectUnit stereotype. Once a stereotype

is created it is necessary specify the ExtensionFamily that it

belongs to. The source code snippet presented in line 3 adds the

stereotype created in line 2 inside the ExtensionFamily ele-

ment created in line 1. 

Lines 4 and 5 are filled with Name and Type values of the

stereotype, which are String type. In this line the setName
value is AspectUnit and represents the name of the stereotype,

differently of what occurs in line 2 that the name AspectUnit
represents an instance of the Stereotype element. 

Line 6 the TagDefinition IsPrivileged is created and

in line 7 this tag is attached to the AspectUnit stereotype. In

line 8 and 9 the Tag and Type properties of TagDefinition
element are defined. Once more, the filled values of these elements

are Strings , as is defined by the KDM rules. 

All the stereotypes, relationship and attributes shown in

Fig. 5 were programmatically added and properly attached, i.e.,
6 http://advanse.dc.ufscar.br/index.php/research-projects/fapesp-2017 . 

fi  

t  

m

he stereotypes were attached to an ExtensionFamily and the

elationships and the attributes were attached to their respective

tereotypes. Once all the elements were programmatically created

t was possible to reuse them by means of a Java class with all the

rogrammed Stereotypes and TagDefinitions . 

.2. The heavyweight AO extension 

The procedure for building the heavyweight extension was to

reate a new KDM metaclass for each stereotype of Evermann’s

rofile ( Santos et al., 2014a ). The main difference is the base meta-

lass used; instead of using the same UML metaclass used by Ev-

rmann, we used our mapping table (see Table 3 ) to find an equiv-

lent in KDM. For example, if a stereotype in Evermann’s profile

xtended the Class metaclass of UML, in our heavyweight exten-

ion the new metaclass should extended the ClassUnit of KDM,

s these classes are equivalent in these metamodels. 

As can be seen in Fig. 5 , the main aspect-oriented ele-

ents from Evermann’s profile are represented as higher level

lasses/stereotypes: CrossCuttingConcern , Aspect , Advice ,
ointcut and StaticCrossCuttingFeature . The remaining

lements are subclasses. 

For example, CrosscuttingConcernUnit is a new meta-

lass we have created for representing the existence of a cross-

utting concern, such as persistence, security and concurrence. In

vermann’s profile this element extends the Package metaclass

rom UML. In KDM AO extension this element extends the Package

etaclass from KDM. This KDM metaclass represents a standard

ackage where it is possible to group aspects, classes and others

lements from AO and OO programming languages. 

AspectUnit is a new metaclass for representing an aspect

nd it extends the ClassUnit metaclass. The decision to extend

he ClassUnit metaclass is justified because this element has all

he characteristics that an aspect can have, besides, it can support

ew elements such as Pointcuts , Advices and inter-type dec-

arations. 

AdviceUnit is a new metaclass for representing advices. The

lement to represent advices is AdviceUnit , that extends the

ontrolElement metaclass. Knowing that advice is an element

hat specifies behavior, it is possible to consider an advice as a

ethod. Nevertheless, advices do not have neither access speci-

ers (public, private and protected) nor types (constructor, destruc-

or, etc.). Because of this were decided not to make AdviceUnit
etaclass extend the MethodUnit behavior. 

http://advanse.dc.ufscar.br/index.php/research-projects/fapesp-2017


B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 293 

Fig. 6. AspectUnit element properties. 

 

P  

fi  

S  

m  

w  

S  

c  

c  

m  

e  

w  

t  

r  

c

 

r  

e  

M  

o  

t  

b  

c

 

f  

t  

m  

m

 

e  

e  

v  

o

 

m  

c  

h  

E  

s  

p  

m  

v  

i

 

A  

m  

s

 

o  

w  

t  

i  

s  

b  

t  

d  

b  

c

4

 

s  

u  

j  

t  

v  

l

4

4

 

g  

B  

c

4

 

a  

T  

t  

M  

o  

j  

c

4

 

n  

s  

n  

i  

b

 

 

 

4

 

t  

T

PointCutUnit is a new metaclass for representing

ointcuts and join points. According to Evermann’s pro-

le, PointCut is a structural element and extends a

tructuralFeature metaclass from UML. The KDM also has a

etaclass to represent structural features called DataElement ,
hich is an abstract metaclass. Their sub-metaclasses are

torableUnit , MemberUnit , and ItemUnit . As a PointCut
an be abstract, and the StorableUnit and ItemUnit meta-

lasses can not, MemberUnit were chose to be the super-

etaclass of PointCutUnit . Besides, other motive that influ-

nced in the choice of using the MemberUnit as super-metaclass

as the fact that the Pointcuts crosscuts others classes, and

he MemberUnit is the KDM metaclass that is used to make

eferences to members of others classes inside of a determinate

lass. 

StaticCrossCuttingFeature is new metaclass for rep-

esenting inter-type declaration. In heavyweight extension this

lement can extend two metaclasses: StorableUnit and

ethodUnit . Thus, StaticCrossCuttingFeature is capable

f representing not only structural features but also behavioral fea-

ures. Therefore, a StaticCrossCuttingFeature instance can

e an attribute or a method that will be inserted in a determinate

lass. 

CrossCuttingConcern is a new element that was extended

rom Package element of KDM Code Package. However, none at-

ribute or additional relationship were inserted in the new ele-

ent, once its creation aimed only separate the concerns in a KDM

odel, without adding behavior. 

Creating KDM Extensions. To create the heavyweight KDM AO

xtension version the Eclipse IDE and the Framework Eclipse Mod-

ling Framework (EMF) were used. This allowed the edition and

isualization of the original KDM in “.ECORE” format. More details

f this process can be seen in Santos et al. (2014b) . 

Summarizing, by means of these tools we could insert all the

etaclasses depicted in Fig. 5 . In Fig. 6 the AspectUnit meta-

lass properties are shown. As we can see, the element created

as some properties that have to be filled, such as Abstract ,
SuperTypes and others. Each new metaclass has its properties

et in different ways, but it has to be in accordance to the pro-

osed profile (KDM AO extension). After the creation of all new

etaclasses in KDM, the heavyweight KDM AO extension plug-in

ersion were created, allowing the creation of new aspect-oriented

nstances of KDM. 

In Listing 2 an instantiation example of the heavyweight KDM

O extension is presented. In line 1 an instance of AspectUnit

etaclass is created, in line 2 it is informed the name of the in-

tance and in line 3 the property IsPrivileged is filled. 
Regarding the reuse of heavyweight KDM AO extension plug-in

ne should say that it can only be reused in Eclipse tool, once it

as developed in this IDE. However, the AOP mataclasses, proper-

ies, and relationship inserted in the original KDM, can be reused

n any tool that could read XMI source-code from “.ECORE” exten-

ion. By reading the XMI information of the new metaclasses and

y creating a tool/plug-in with these new information, we believe

hat it would be possible to create AO KDM instances indepen-

ently of the programming language (AspectC ++ , AspectS, etc.),

ecause the metaclasses here created are extensions of the existing

lasses, that are platform and language independents. 

. Evaluation 

In this section we present an experiment to investigate whether

oftware engineers productivity (time and errors) is different when

sing HW and LW KDM extensions. In this experiment, the sub-

ects had to create and change (apply maintenance modifica-

ions) instances of the both KDM AO extensions we have de-

eloped. All the planning was done according to Wohlin guide-

ines ( Wohlin et al., 20 0 0 ). 

As already pointed out in Section 1 our RQ is: 

RQ – Which of the KDM AOP extensions (LW or HW) requires 
less effort (time) and leads to less errors when creating and 

maintaining their instances? 

.1. Method 

.1.1. Participants 

The experiment was conducted in the context of a Software En-

ineering course of the Federal University of São Carlos (UFSCar) in

razil. The participants (subjects) were 14 graduate candidates in

omputer science. 

.1.2. The aspect-oriented framework 

In order to simulate a real situation, we had to choose some

spects, pointcuts and joinpoints to be modeled by the subjects.

herefore, instead of creating hypothetical elements we decided

o use an existing AO persistence framework ( de Camargo and

asiero, 2008 ), because it had almost all existing aspect of aspect-

riented elements. Thus, all the activities performed by the sub-

ects involved the creation and the maintenance of aspects, point-

uts and joinpoints of this framework. 

.1.3. Selection of variables 

The dependent variables are the instantiation time, the mainte-

ance time and the number of errors. Instantiation time is the time

ubjects spent to create instances of the extended KDM. Mainte-

ance time is the time subjects spent for modifying (change) exist-

ng KDM-AO instances. The number of errors represents the num-

er of errors a subject got in each activity. 

The independent variables or factors are: 

1. KDM AO extensions: There are 2 levels for this factor; the HW

and LW extensions. 

2. Activities performed by the subjects: There are 6 levels for the

developing activities and 2 levels for the maintaining activities.

In Table 4 , we present the description of the activities. 

.1.4. The planning of the experiment 

The experiment was planned in blocks ( Wohlin et al., 20 0 0 ),

o ensure the subject’s experience did not interfere in the result.

able 5 presents the experiment organization. 



294 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

1 AspectUnit myAspect = CodeFactory.eINSTANCE.createAspectUnit ();

2 myAspect.setName("connectionComposition");

3 myAspect.setIsPrivileged(true);

Listing. 2. HW extension instance example. 

Table 4 

Activities performed by the subjects. 

Development activities 

Activity number Activities description 

1 Creating three different CrosscuttingConcerns (security, logging and persistence) 

2 Creating three different Aspect and associate them with the Crosscutting Concerns created in activity 1. 

3 Creating three different PointCut with a joinpoint each. 

4 Creating two different PointCut with two joinpoints each. 

5 Creating three different Advice and link them to the PointCuts created in activity 3. 

6 Creating five different Inter-Type Declaration. 

Maintenance activities 

Activity number Activities description 

7 Adding three properties in a specific Aspect. 

8 Transforming a PointCut with a Joinpoint in a PointCut with two Joinpoints. 

Table 5 

Groups distribution in relation to the extensions. 

Group 1 (7 subjects) Group 2 (7 subjects) 

Phase 1 LW AO KDM HW AO KDM 

Phase 2 HW AO KDM LW AO-KDM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4  

t  

t  

s  

s  

A  

i  

e  

e  

t

4  

e  

r  

f  

j  

a  

t  

t  

t  

c

4  

i  

e  

L  

h  

e  

K  

c  

f

 

p  

i  

a  

l  

e  
In Phase 1, the groups 1 and 2 worked in parallel - while group

1 performed the activities (development and maintenance) using

the LW extension, group 2 used the HW one. Once they have fin-

ished the activities, they where allowed to proceed to the second

phase, where the extensions were shift between the groups. 

Each group was submitted to both factors, the extensions and

the activities,but in different phases. This was done to verify if the

order impacts the result, i.e., if instantiating an specific KDM ex-

tension prior to the another one lead to different results. 

As shown in Table 5 , all the activities performed by the subjects

were related to the same context - a persistence framework. The

activities involved the creation of aspects , Pointcuts , join
points , Advices and Intertype declarations of this per-

sistence framework. 

The performed activities were divided into development and

maintenance activities. The name of each instance were in-

formed to the subjects during the experiment. The develop-

ment activities are concentrated on creating new KDM AO ele-

ments, while the maintenance ones are focused on changing ex-

isting AO KDM instances. The complete activities can be seen in

https://github.com/Advanse-Lab/KDM-AO. 

4.2. Operational steps of the experiment 

The experiment was performed in three steps: ( i ) preparation,

( ii ) execution, and ( iii ) data validation. We explain these steps in

the following subsections. 

4.2.1. Preparation of the experiment 

In this step, the materials to be used in the experiment were

elaborated 

7 . 
7 The artifacts used in the experiment are available in the link: https://github. 

com/Advanse- Lab/KDM- AO . 

d

 

a  

p  
.2.1.1. Instrumentation. The following documents were developed

o be used in the experiment: ( i ) Subjects Characterization Form,

o get the professional experience and in the topics related to the

tudy; ( ii ) Consent Form, to subjects approval and consent of the

tudy objectives and the participation terms; ( iii ) Description of the

ctivities with the instructions of its execution; ( iv ) Guide for Us-

ng the LW and HW Extensions; ( v ) Mapping table of the AspectJ

lements to LW and HW extensions and ( vi ) Class diagram of the

xtensions, so the subject could know which attributes and rela-

ionships belong to a determinate element. 

.2.1.2. Data collecting instruments. A data collecting form was

laborated to gather data, in which the subjects should fill all the

equired information during the experiment execution. In the same

orm, there was a field for qualitative evaluation, so each sub-

ect should report its perception about the difficulties, easiness

nd suggestions while using the extension. This was done after

hey have finished the experiment. This form was elaborated in

he same file that the activities descriptions of the experiment, so

he subject could access all the information and could record their

onclusion times in the same document. 

.2.1.3. Training and pilot. All the subjects were submitted to train-

ng and pilot sessions prior the real experiment. In the training we

xplained about AOP and how to create KDM instances using the

W and HW extensions. The training took four hours in total; two

ours for explaining about the main topics and two hours for ex-

rcising. The goal was to make them proficient in the creation of

DM-AO instances (LW and HW). In this day we also handed the

onsent and characterization forms to the subjects, so that this in-

ormation could be used in the pilot. 

In the pilot’s day, we simulated the activities that would be

erformed in the real experiment. These activities helped us on

mproving some details, such as the time limit required for each

ctivity and the way the activities should be distributed. The pi-

ot was organized in groups, the 14 subjects were divided in two

qual groups and each group should use both approaches, but in

ifferent phases. 

All the subjects used the same application, i.e., they should cre-

te aspects with generic names and without context, for exam-

le, Aspect A , Pointcut pt1 , etc. This was different from the

https://www.github.com/Advanse-Lab/KDM-AO


B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 295 

Table 6 

Subjects distribution according to their punctuation. 

Punctuation (Points based on their skills) 

Subject Very low 0 a 10 Low 11 a 20 Normal 21 a 30 High 31 a 40 Very High 41 a 50 

1 24 

2 21 

3 27 

4 41 

5 19 

6 21 

7 9 

8 24 

9 29 

10 32 

11 42 

12 20 

13 10 

14 35 

Total 2 2 6 2 2 

r  

p  

i  

p

 

o  

d  

i  

o  

n  

a

 

s  

t

 

t  

v  

e  

K  

i

4

 

p  

s  

c  

t  

t  

p  

t  

w  

p  

c

 

i  

w  

n  

i  

p  

c  

a  

i  

t

Table 7 

Means and standard deviation for time variable of development 

activities. 

Technique Activity Time.mean (min) Time.sd (min) 

HW Actv-1 2.571429 0.7559289 

HW Actv-2 3.642857 1.0082081 

HW Actv-3 5.0 0 0 0 0 0 1.1766968 

HW Actv-4 6.714286 1.4898927 

HW Actv-5 4.857143 2.5975474 

HW Actv-6 3.642857 1.2157393 

LW Actv-1 3.428571 1.0894096 

LW Actv-2 4.285714 0.6112498 

LW Actv-3 7.571429 0.8516306 

LW Actv-4 16.571429 2.9277002 

LW Actv-5 9.357143 2.2051389 

LW Actv-6 5.214286 1.2513729 

4

4

 

f  

f  

o  

f  

p

 

v  

a  

t  

i  

L  

o  

i  

2  

t

 

p  

o  

n  

d  

f

t  

t  

P

eal experiment where the created aspects were related to the AO

ersistence framework. The training and pilot day were conducted

n such way that in the end all the subjects could use both ap-

roaches. 

In the real experiment day we basically used the same steps

f the pilot; the main difference were: ( i ) the activities and their

escriptions were delivered to the subjects in a formal document,

nstead of explaining them by means of a presentation, and ( ii ) all

f the activities that should be done were explained in the begin-

ing of the experiment, so this could improve the subjects’ time

nd avoid time interruptions. 

Once the subjects have started the activities, they could only

olve their doubts with the delivered artifacts. Any other doubt

hey had should be registered in the qualitative evaluation form. 

Another difference between the experiment and the pilot was

he activities categorization. We categorize the activities in “de-

elopment” and “maintenance”. We decided to make this differ-

ntiation to investigate not only the productivity in writing new

DM instances but also the productivity in maintaining the exist-

ng ones. 

.2.2. Execution of the experiment 

Firstly, the subjects were positioned in the groups based on its

unctuation of the Subjects Characterization Form. Each group had

even subjects. In Table 6 the subjects punctuation are represented

onsidering the form questions and the subjects total to each punc-

uation category. Both groups had the same subjects quantity in

he same category, i.e., each group had one subject with very low

unctuation (0 to 10), one subject with low punctuation (11 to 20),

hree subjects with average punctuation (21 to 30), one subject

ith high punctuation (31 to 40) and one subject with very high

unctuation (41 to 50). After the subjects were allocated, they re-

eived all the artifacts needed to perform the activities. 

Regarding the data of the experiment, for some activities our

nterest was the time spent for conducting it. In this case, the time

as registered in minutes. In other cases, our interest was in the

umber of errors and, in this case, it was analyzed typos, miss-

ng punctuation and omitted reserved words. Thus each correction

erformed in a code line in order to make it works properly was

ounted as one error. For instance, if a statement contains one typo

nd two missing reserved words the errors amount is 3 (three). For

nformation purposes, all tables were obtained by using the R sta-

istical software. 
.3. Data validation of development activities 

.3.1. On time variable 

In this section we analyze the data of the 14 subjects who per-

ormed the six development activities and the effect of these two

actors (extensions and activities) on the time variable. The type

f analysis that was conducted is called as two-within subjects

actors (two-way repeated measures ANOVA), because each group

erforms all the development activities of the two extensions. 

In Table 7 , we present the means (Time.mean) and standard de-

iations (Time.sd) of the time variable related with development

ctivities and in Fig. 7 the corresponding box-plot. We can see

hat box-plots of the HW extension are more or less homogeneous

n comparison with the box-plots of LW extension. Box-plots of

W.Actv-4 and LW.Actv-5 look like they have the largest amount

f spread data for LW extension, indeed Table 7 corroborate that

mpression because the standard deviation values of each one are

.92 and 2.20 respectively. Thus, this is an indicator that these ac-

ivities requires more attention to be analyzed. 

In order to use multifactorial ANOVA for analyzing the data, a

recondition imposed is the assumption of normality. Therefore,

ur first analysis was checking whether there is no violation of

ormality by using Shapiro–Wilk test. The test showed that the

ata are not normal. The complete analysis can be found in the

ollowing URL (https://github.com/Advanse-Lab/KDM-AO). In order 

o overcome this problem we apply a non-parametric test for mul-

iple factor with repeated measures: the Aligned Rank Transform

rocedure (ART) ( Wobbrock et al., 2011 ). 



296 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

Fig. 7. Average time of development activities on time variable. 

Table 8 

ART test of development activities on time variable. 

F Df Df.res Pr ( > F ) Signif. codes 

1 Technique 243.092 1 143 < 2.22e-16 ∗∗∗

2 Activity 129.659 5 143 < 2.22e-16 ∗∗∗

3 Technique:Activity 48.669 5 143 < 2.22e-16 ∗∗∗

Signif. codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 1 Model: Mixed Effects (lmer), Response: 

art(Time). F: Statistic. Df: Degree of Freedom. Df.res: Residual degrees of freedom. Pr( > 

F): Significance probability. 

Fig. 8. Interaction plot of development activities on time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

6  

t  

 

t  

c  

f  

A  

d  

A  

d  

A  

d  

A  

d  

A

4

 

w  

t  
In Table 8 , we show the results of the application of the ART

test on the development activities, where the p -values for each fac-

tor and the interaction between them are statistically significant,

meaning there is a main effect of extensions on time, a main ef-

fect of activities on time and a significant interaction between ex-

tensions and activities. A “main effect” is the effect of a single in-

dependent variable on a dependent variable, in this case, the effect

of extension and activity on time variable. 

We can also see graphically the interaction between the two

factors by means of an interaction plot. In Fig. 8 we show the inter-

action plot of development activities between the two extensions

(LW and HW) on time. The line that represents the LW extension

always holds a gap in relation with the line that represents the

HW extension. That means there is a main effect of extension on

time because LW always take more time than HW for developing

the activities. 

From Actv-1 to Actv-2 the lines are sloped and almost parallel

so there is a main effect on activity because both require slightly

more time. From Actv-2 to Actv-3 there is a behaviour called “al-

ligator jaws”, in Actv-2, both of the extensions are basically the

same, very close in performance but in Actv-3, the LW extension

technique has now become deferentially worst than HW extension

technique in terms of developing time. The same can be said from
 t  
ctv-3 to Actv-4 and Actv-4 to Actv-5. Finally, from Actv-5 to Actv-

 both techniques decrease the development time but the gap be-

ween the lines is bigger than the gap between Actv-1 and Actv-2.

In Table 9 we show the pairwise comparison among the activi-

ies of development by taking into account the time variable. This

an be interpreted by posing the following questions: Is the dif-

erence between HW and LW significantly different in condition

ctv-1 to condition Actv-2?. No, because its p -value > .05. Is the

ifference between HW and LW significantly different in condition

ctv-2 to condition Actv-3?. Yes, because its p -value < .05. Is the

ifference between HW and LW significantly different in condition

ctv-3 to condition Actv-4?. Yes, because its p -value < .05. Is the

ifference between HW and LW significantly different in condition

ctv-4 to condition Actv-5?. Yes, because its p -value < .05. Is the

ifference between HW and LW significantly different in condition

ctv-5 to condition Actv-6?. Yes, because its p -value < .05. 

.3.2. On error variable 

In this section we analyze the data of the fourteen subjects

hich performed six development activities by using the two ex-

ension techniques in KDM models, LW and HW and the effect of

hese two variables (technique and activity) on the error variable.



B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 297 

Table 9 

Interaction contrast of development activities on time variable. 

Value Df Chisq Pr ( > F ) Signif. codes 

1 HW-LW : Actv -1-Actv -2 −3.857 1 0.0573 0.810797 

2 HW-LW : Actv -2-Actv -3 57.857 1 12.8951 0.001977 ∗∗

3 HW-LW : Actv -3-Actv -4 146.214 1 82.3553 < 2.2e-16 ∗∗∗

4 HW-LW : Actv -4-Actv -5 −82.429 1 26.1738 2.496e-06 ∗∗∗

5 HW-LW : Actv -5-Actv -6 −90.643 1 1.6504 1.661e-07 ∗∗∗

Signif. codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 1. Chisq Test ( χ2 ), p -value adjustment method: 

holm. Df: Degree of Freedom. Df.res: Residual degrees of freedom. Pr( > F): Significance proba- 

bility. 

Table 10 

Means and standard deviation for error variable of de- 

velopment activities. 

Technique Activity Error.mean Error.sd 

HW Actv-1 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 

HW Actv-2 0.2142857 0.8017837 

HW Actv-3 0.1428571 0.5345225 

HW Actv-4 0.2142857 0.8017837 

HW Actv-5 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 

HW Actv-6 0.50 0 0 0 0 0 1.6052798 

LW Actv-1 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 

LW Actv-2 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 

LW Actv-3 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 

LW Actv-4 0.8571429 1.8337495 

LW Actv-5 0.3571429 0.9287827 

LW Actv-6 0.4285714 1.6035675 

Table 11 

ART test of development activities on error variable. 

F Df Df.res Pr ( > F ) Signif. codes 

1 Technique 10.7276 1 143 0.0013243 ∗∗

2 Activity 1.8368 5 143 0.1093124 

3 Technique:Activity 3.2235 5 143 0.0086730 ∗∗

Signif. codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 1. Model: Mixed Effects (lmer), Re- 

sponse: art(Error). F: Statistic. Df: Degree of Freedom. Df.res: Residual degrees of 

freedom. Pr( > F): Significance probability. 

T  

a

 

v  

H  

p  

c  

I  

m

 

i  

s  

c  

L  

f

 

m  

t  

m  

r

 

b  

t  

a  

t  

a  

p

 

t  

t  

a  

p

 

fi  

a  

t  

r  

a  

t  

b  

t

4

4

 

w  

t  

t  

T  

s  

o  

t

 

d  

H  

o

 

i  

d  

t  

t

 

i  

s  

b  

b  

s  

(

 

a  

i  

t  

t  

c

 

w  

T  
he type of analysis that was conducted in this section is the same

s the one we made in the previous section. 

In Table 10 , we present the statistics of means and standard de-

iations of error variable related with development activities for

W and LW techniques. We do not provide the corresponding box-

lot because there are several zero values in the standard deviation

olumn that does not bring valuable information to our analysis.

nstead of that, an interaction plot could be more useful to analyze

ain effects and interactions among levels of factors. 

As in the previous analysis, herein we also check whether there

s not a violation of normality by using Shapiro–Wilk test. The test

howed that the data are not normal and the complete analysis

an be found in the following URL (https://github.com/Advanse-

ab/KDM-AO). Thus, we apply the non-parametric test for multiple

actor with repeated measures ART. 

In Table 11 , we show the results of the ART test of develop-

ent activities on error, where the p -values are just significant for

echnique and the interaction between technique and activity. That

eans that there is an overall main effect of the technique on er-

or and a significant interaction between technique and activity. 

In Fig. 9 we show the interaction plot of development activities

etween the two techniques on error. As we see, the lines of the

wo techniques are crossing and that is a classic picture of inter-

ction effect. Also, if we draw a line between the two techniques

he proportion areas seems to be similar which indicates, in over-
ll, there is not much changes in activity, as the ART test indicated

reviously ( p -value > .05). 

Table 12 shows the interaction contrast of development activi-

ies on error variable. Line 6 presents the only significant p -value,

hat means there is significant differences on error by using HW

nd LW extension techniques when developers perform Actv-3 or

erform Actv-4. 

Some conclusions can be made from the statistical analysis. The

rst one is that developers tend to make more errors when they

re using the LW technique than HW technique. The second one is

hat the activity does not affect significatively the quantity of er-

ors. The third one is that techniques in combination with Act-3

nd Act-4 have an effect on errors. One explanation could be that

he time for developing these activities is higher than the others

ecause of the difficulties involved, and so more errors may be in-

roduced in the development. 

.4. Data validation of maintenance activities 

.4.1. On time variable 

In this section we analyze the data of the fourteen subjects

hich performed two development activities by using the two ex-

ension techniques in KDM models, LW and HW and the effect of

hese two variables (technique and activity) on the time variable.

he type of analysis that was conducted is called as two within

ubjects factors (2 repeated measures factors), because each group

f the seven subjects perform all the maintenance activities of the

wo techniques. 

In Table 13 , we present the statistics of means and standard

eviations of time variable related with maintenance activities for

W and LW techniques and in Fig. 10 the corresponding box-plot

f the data. 

It seems that there is no big differences in time when apply-

ng the HW technique to both activities. Similarly, there is no big

ifferences in time when applying the HW technique to both ac-

ivities. Nevertheless, HW technique performs better (in less time)

han LW technique. 

As in the previous analysis, herein we also check whether there

s not a violation of normality by using Shapiro–Wilk test. The test

howed that the data are normally distributed. Thus, we analyze it

y using a parametric test called Linear Mixed Model (lmm) which

elongs to the lme4 package ( Bates et al., 2015 ) of the R statistical

oftware. The complete analysis can be found in the following URL

https://github.com/Advanse-Lab/KDM-AO). 

Table 14 shows lmm test of maintenance activities on time vari-

ble. There are main effects on Technique and on Activity but there

s not an interaction of these factors. Indeed, Fig. 11 shows the in-

eraction plot of maintenance activities where the lines of each

echnique are slightly parallel without crossing between them,

onsequently with the result of lmm test analysis. 

In light of the overall significant result, we can do some pair-

ise comparisons among the levels of technique and activity. In

able 15 , we show the result of these comparisons and it presents



298 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

Fig. 9. Interaction plot of development activities on error. 

Table 12 

Interaction contrast of development activities on error variable. 

Value Df Chisq Pr ( > F ) Signif. codes 

1 HW-LW : Actv-1-Actv-2 −18.357 1 1.7922 1.0 0 0 0 0 

2 HW-LW : Actv-2-Actv-3 3.143 1 0.0525 1.0 0 0 0 0 

3 HW-LW : Actv-3-Actv-4 41.571 1 9.1913 0.03404 ∗

4 HW-LW : Actv-4-Actv-5 −11.214 1 0.6689 1.0 0 0 0 0 

5 HW-LW : Actv-5-Actv-6 −20.071 1 2.1426 1.0 0 0 0 0 

Signif. codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 1. Chisq Test ( χ2 ), p -value adjustment method: 

holm. Df: Degree of Freedom. Df.res: Residual degrees of freedom. Pr( > F): Significance 

probability. 

Fig. 10. Average time of maintenance activities on time variable. 

Table 13 

Means and standard deviation for time variable of 

maintenance activities. 

Technique Activity Time.mean Time.sd 

HW Actv-7 2.214286 0.6992932 

HW Actv-8 3.428571 1.3424596 

LW Actv-7 5.50 0 0 0 0 1.6984156 

LW Actv-8 7.142857 2.0701967 

 

 

d  

m

4

 

w  

t  

t

 

v  

H  

p  

f  
all the pairwise comparisons available across of the levels in the

interaction plot. Note that all p -values are significant, so there are
Table 14 

Main LMM test of maintenance activities on ti

F Df 

1 (Intercept) 246.5185 1 

2 Technique 109.1364 1 

3 Activity 18.1818 1 

4 Technique:Activity 0.4091 1 

Signif. codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 1.

art(Error). F: Statistic. Df: Degree of Freedom

Pr( > F): Significance probability. 
ifferences on time when using different techniques for different

aintenance activities. 

.4.2. On error variable 

In this section we analyze the data of the fourteen subjects

hich performed two development activities by using the two ex-

ension techniques in KDM models, LW and HW and the effect of

hese two variables (technique and activity) on the error variable. 

In Table 16 , we present the statistics of means and standard de-

iations of error variable related with development activities for

W and LW techniques. We do not provide the corresponding box-

lot because of the values of the data it does not bring valuable in-

ormation to our analysis. Instead of that, an interaction plot could
me variable. 

Df.res Pr ( > F ) Signif. codes 

13 7.849e-10 ∗∗∗

39 7.313e-13 ∗∗∗

39 0.0 0 01234 

39 0.5261708 

 Model: Mixed Effects (lmer), Response: 

. Df.res: Residual degrees of freedom. 



B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 299 

Fig. 11. Interaction plot of maintenance activities on time. 

Table 15 

Post hoc pairwise comparisons of maintenance activities on time variable. 

Simultaneous tests for general linear hypotheses 

Est.Std . Error t value Pr ( > | t |) Signif. codes 

HW,Actv-7 - LW,Actv-7 == 0 −3.2857 0.4738 − 6.935 1.05e-07 ∗∗∗

HW,Actv-7 - HW,Actv-8 == 0 −1.2143 0.4738 − 2.563 0.014355 ∗

HW,Actv-7 - LW,Actv-8 == 0 −4.9286 0.4738 −10.402 4.97e −12 ∗∗∗

LW,Actv-7 - HW,Actv-8 == 0 2.0714 0.4738 4.372 0.0 0 0266 ∗∗∗

LW,Actv-7 - LW,Actv-8 == 0 −1.6429 0.4738 − 3.467 0.002591 ∗∗

HW,Actv-8 - LW,Actv-8 == 0 −3.7143 0.4738 − 7.839 7.77e −09 ∗∗∗

Signif. codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 1. p -value adjustment method: holm. Fit: 

lme4::lmer(formula = Time ∼ (Technique ∗ Activity) + (1 | Subject)). Pr( > |t|): Significance prob- 

ability. 

Fig. 12. Interaction plot of maintenance activities on error. 

b  

e

 

i  

s  

c  

L  

f

 

a  

f  

t  

F  

t  

a  

t  

n  

L  

n  

o

 

a  

e  

p

4

 

c  

p  

n  

a  

v  

t  

w  

J  

t  

t

 

o  

t  

b  

t

 

t  

t  

m  

w  

s

 

t  

b

5

 

e  

(  

t  

l  

c  

d  

g  

s  

g  

i  

s  

a  
e more useful to analyze main effects and interactions among lev-

ls of factors. 

As in the previous analysis, herein we also check whether there

s not a violation of normality by using Shapiro–Wilk test. The test

howed that the data are not normal and the complete analysis

an be found in the following URL (https://github.com/Advanse-

ab/KDM-AO). Thus, we apply the non-parametric test for multiple

actor with repeated measures ART. 

In Table 17 , we show the results of the ART test of maintenance

ctivities on error, where there are not overall significant main ef-

ects on technique, activity and also there is not an interaction be-

ween the two factors because p -values are > .05 in all cases. In

ig. 12 we show the interaction plot of maintenance activities be-

ween the two techniques on error. Lines are slightly separated in

ctivity Actv-7 and tend to join in activity Actv-8. Indeed, for ac-

ivity Actv-7 there were no errors when developers used HW tech-

ique and means of error for activity Actv-8 when developers used

W technique is very low. Thus, the gap between the two lines is

egligible and therefore, we state that there is not a main effect

n technique. 

In Table 18 , we show the interaction contrast of maintenance

ctivities on error variable. There is not significant differences on

rror by using HW and LW extension techniques when developers

erform Actv-7 or perform Actv-8. 

.5. Discussion of results 

After analyzed statistically the results, we can make some con-

lusions about the extension techniques for the KDM. The analysis

erformed in Section 4.3 shows that in the overall, the LW tech-

ique performed worse than HW technique, for all development

ctivities. However, it was notorious the poor performance of de-

elopers in activities 3, 4 and 5 with the LW technique. It seems

hat activities that requires the extension of several AOP structures
ith the LW technique, such as the combination of PointCuts and

oinPoints, take more time to implement because developers need

o write more lines of code in comparison with the HW extension

echnique. 

The analysis in Section 4.3.1 shows that in the overall, the usage

f LW or HW extension technique for developing activities imply in

he rise of errors. This is in compliance with the previous analysis

ecause as developers write more lines of code is reasonable that

hey make more mistakes in the codification. 

The analysis in Section 4.4 shows that in the overall, the LW

echnique performed worse than HW technique, for the two main-

enance activities. However, both of the techniques increase the

aintenance time in the activity Actv-8. The activity Actv-8 deals

ith PointCut and JoinPoints that is the same as in the previous

cenario, taking more time to be implemented by developers. 

Finally, the analysis in Section 4.4.2 shows that in general the

echniques and the activities does not affect significantly the num-

er of errors because few errors were committed by developers. 

. Threats to validity 

As with any experimental study, this experiment has sev-

ral threats to validity. In this section, we consider the study of

 Cook and Campbell, 1979 ) as a template to discuss the threats

hat might jeopardize the validity of our experiment. Internal va-

idity is concerned with the confidence that can be placed in the

ause-effect relationship between the treatments and the depen-

ent variables in the experiment. External validity has to do with

eneralization, namely, whether or not the cause-effect relation-

hip between the treatments and the dependent variables can be

eneralized outside the scope of the experiment. Conclusion valid-

ty focuses on the conclusions that can be drawn from the relation-

hip between treatment and outcome. Finally, construct validity is

bout the adequacy of the treatments in reflecting the cause and



300 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

Table 16 

Means and standard deviation for error variable of 

maintenance activities. 

Technique Activity Error.mean Error.sd 

HW Actv-7 0.0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 

HW Actv-8 0.3571429 0.8418974 

LW Actv-7 0.7857143 1.0509023 

LW Actv-8 0.5714286 1.3985864 

Table 17 

ART test of maintenance activities on error variable. 

F Df Df.res Pr ( > F ) Signif. codes 

1 Technique 2.1128 1 39 0.15407 

2 Activity 1.5888 1 39 0.21499 

3 Technique:Activity 1.5733 1 39 0.21720 

Signif. codes: 0 ∗∗∗ 0.001 ∗∗ 0.01 ∗ 0.05 . 0.1 1. Model: Mixed Effects (lmer), Re- 

sponse: art(Error). F: Statistic. Df: Degree of Freedom. Df.res: Residual degrees of 

freedom. Pr( > F): Significance probability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 18 

Interaction contrast of maintenance activities on error variable. 

Value Df Chisq Pr ( > Chisq ) 

1 HW-LW : Actv -7-Actv-8 -8 1 1.5733 0.2097 

Chisq Test ( χ2 ), p -value adjustment method: holm. Df: Degree of Freedom. 

Pr( > Chisq): Significance probability. 

i  

o

5

 

i  

h  

t  

t  

a  

c  

i  

c  

h

 

o  

e  

f  

n  

i  

t

5

 

t  

s  

t  

i  

f  

w  

d

 

w  

T  

b

6

 

t  

s  

p

6

 

b  

a  

m  

w  

a  

w  

p  

i

 

p  
the suitability of the outcomes in representing the effect. We cat-

egorized all threats to validity according to this classification. 

5.1. Internal validity 

We mitigated the experience level of participants by splitting

all the participants in two balanced groups. To the creation of

these two groups we have considered the experience level based

on Table 6 and we have balanced the groups considering the total

points of each subject. 

The training phase was focused on presenting the AOP con-

cepts, the metamodel extensions mechanisms and how to create

KDM-AO instances (LW and HW). Thus, no training on Model-

Driven Architecture (MDA) or ADM were done. However, the sub-

jects (masters and PhDs candidates) already had a preparation by

the professor of the course, so we did not have to be concerned

about it. Another point is that as they were instantiating the meta-

model extensions programmatically, the model-based part was ab-

stracted. 

Another internal validity is the productivity under evaluation.

There is a possibility that this might influence the experiment re-

sults because students often tend to think they are being evalu-

ated by experiment results. In order to mitigate this, we explained

to the students that no one was being evaluated and their partic-

ipation was considered anonymous. However, we cannot rule out

the possibility that some participants has been influenced by this

threat. 

5.2. External validity 

The sample might not be representative of the target popula-

tion. As mentioned, we carried out the experiment with 14 sub-

jects, which were divided into two group. We cannot rule out the

threat that the results could have been different if another sample

had been selected. However, to diminish this threat we have per-

formed the training stage in order to provide to the subjects the

knowledge in extension mechanisms needed the make the sample

the most representative. 

It is possible that the exercises are not accurate for every main-

tenance’s problem for real world applications. To mitigate this

threat, the activities were designed considering applications based

on the real world. 

Another point is that the activities were application-

independent as can be seen in Table 4 . For example, creating

three pointcuts is not different if the pointcuts is from application

Y or X , because just the name of them is different. The main point
s that creating elements in the LW extension demands more lines

f code and, consequently, more effort and error proneness. 

.3. Conclusion validity 

The main threat to conclusion validity has to do with the qual-

ty of the data collected during the course of the experiment. We

ave evaluated the performance of the subjects considering the

ime to perform the activities and the number of errors in each

ask. About the time, we have asked to the subjects to set the start

nd the end time. In this sense we could have had a problem be-

ause a subject could forget to mark the time in the form. To mit-

gate this, we have set a standard start time to all subjects and to

ertificate that they were recording the time in each activity we

ad three monitors in the room just to check this. 

About the numbers of errors, each subject had to hand two set

f files, one to each treatment, the challenge was to catch all the

rrors without miss a single one. To mitigate this, we have per-

ormed the error checking by two experts from our group, if the

umber of errors of a subject was the same we considered right,

f not we would have to check again until the number of errors be

he same. 

.4. Construct validity 

The subjects already knew the researchers and they also knew

hat the HW instantiation process was supposed to be easier (less

ource code to be written) if compared to the LW one. Both of

hese issues could affect the collected data and cause the exper-

ment to be less impartial. In order to avoid impartiality, we en-

orced that the participants had to keep a steady pace during the

hole study and that both approaches had their advantages and

isadvantages. 

Since we have created both KDM-AO extensions we claim that

e had no preference neither for the LW one nor for the HW one.

hus we have eliciting the main advantages and disadvantages of

oth in this paper. 

. Related works 

This section presents the related works of our approch. We split

his section in three topics: ( i ) specific approaches to KDM exten-

ions, ( ii ) generic approaches such as UML’s extensions and ( ii ) ap-

roaches that use aspect-oriented in legacy systems. 

.1. Specific approaches - KDM extensions 

The work more related to ours is the KDM AO extension created

y Shahshahani (2011) . As we have done here, this author also cre-

ted a heavyweight KDM extension for aspect-oriented program-

ing. There are three main differences between our works. Firstly,

hile Mirshams has based her extension on an aspect model cre-

ted by herself, we have created our extension based on a very

ell known profile for aspect-oriented programming. Evermann’s

rofile encompasses all the AO concepts presented in AspectJ and

n other aspect-oriented languages, like Aspect C ++ and AspectS. 

The second difference is the scope of our extensions. The as-

ect model used by Mirshams contains much less elements than



B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 301 

E  

b  

l  

c  

t  

e  

a  

t

 

r  

p  

m  

t  

e  

l  

i  

c  

h  

a  

t  

e

 

f  

e  

K  

s

 

s  

e  

2  

t  

l  

u  

a  

a  

e

6

 

S  

A  

Q

 

t  

t  

c  

c

 

A  

a  

a  

p  

a  

m  

k  

t  

n  

t

 

p  

c  

i  

a  

p  

a  

a  

i  

c  

n

 

f  

fi  

e  

u

6

 

(  

h  

A  

d  

t  

t

 

b  

r  

c  

v  

o  

v  

T  

w  

a  

p  

l  

f

 

t  

c  

h  

o

7

 

a  

A

 

m  

a  

t  

r  

j  

t  

t  

f  

h  

i  

i  

m

 

v  

w  

g  

d  

A  

p  

t  

s  
vermann’s profile. That means our extension is able to represent

oth a high level (using the most generic metaclasses) and a low

evel (using most specific metaclasses) view of the system. In her

ase, just a higher level view is possible. The third difference is

hat her work is limited to dynamic crosscutting as there are no

lements for representing inter-type declarations. However, despite

ll of these differences, the main similarity is that we have used

he same KDM metaclasses she has used too. 

Another KDM extension is presented by Baresi and Mi-

az (2011) . They proposed a heavyweight KDM extension to sup-

ort Component-Oriented MOdernization (COMO). COMO is a

etamodel that supports traditional concepts of software architec-

ure, allowing to attach software components in KDM. Using their

xtension it is possible to replace or add parts of a system. Un-

ike we have done here, in their paper they had not used an exist-

ng profile as the starting point for creating their extension - they

ombined another metamodel to the KDM. COMO extends some

igh level metaclasses of KDM, such as KDMModel , KDMEntity
nd KDMRelationship . These classes are the base of their ex-

ension and provide the link between KDM and COMO metamod-

ls. 

The main similarity with our work is that they have also per-

ormed a heavyweight extension in KDM. As a main difference, the

xtension presented by them only extended high level elements of

DM, while in our solution we have use more specific elements

uch as ClassUnit and MemberUnit . 
Usually event logs are represented with particular notations

uch as Mining XML (MXML) rather than the recent software mod-

rnization standard, such as KDM. Therefore, ( Pérez-Castillo et al.,

012 ) created an extension aiming to mitigate this limitation, i.e.,

he authors have extended KDM’s Event model to describe event

ogs. Similarly to our lightweight KDM extension they also have

sed the ExtensionFamily mechanism – allowing them to cre-

te Stereotypes comprising different TagDefinitions and

lso permitting them to integrate event logs in KDM, tagging the

xtracted entities with the extended concepts. 

.2. Generic approaches - UML extensions 

Similar to our work and the work proposed by

hahshahani (2011) there are researches that seek to perform

OP extensions in UML ( Ahmed et al., 2017; Zakaria et al., 2002;

aisar et al., 2013; Stein et al., 2002 ). 

Ahmed et al. (2017) focuses on creating a lightweight UML ex-

ension which supports language specification for AspectJ. Similar

o our extension they also have used Eclipse IDE – more specifi-

ally they used Eclipse Modeling Framework (EMF), which is the

ore to represent KDM’s metamodels in Eclipse. 

Zakaria et al. (2002) proposed an UML extension for modeling

O system. The authors used the lightweight mechanism to cre-

te the AO UML extension. Lightweight UML extension mechanism

re based on “Stereotypes”, “Tagged Values”, and “Constraints”. As

resented in Listing 1 our lightweight AO extension mechanism

lso contains “Stereotypes” and “Tagged Values” (known in KDM’s

etamodel as “TagDefinition”), see lines 2 and 6, respectively. Za-

aria et al., proposed different types of tags for relationship be-

ween the classes and aspects, differently in our approach one just

eed to call the method createTagDefinition() and add this

ag into a “Stereotypes”, see Line 6 and Line 7 in Listing 1 . 

Qaisar et al. (2013) describe a metamodel for AOP in which they

roposed an extension for AOP. The authors used Meta Object Fa-

ility (MOF) which has the heavyweight extensibility mechanism

n its specification. Likewise the KDM, the authors tried to cre-

te a complete metamodel, i.e., according to the authors, the pro-

osed metamodel not only models the static structure of AOP but

lso can models the behavioral structure of the model. The authors
lso defined new metaclasses, for example, they define the follow-

ng metaclasses: Aspect , PointCut , and Advice – these meta-

lasses are strongly similar to our heavyweight extension mecha-

ism: AspectUni , PointCutUnit , and AdviceUnit . 
Stein et al. (2002) also create AO extension to design notation

or AspectJ programs. Similar to our approach the authors classi-

ed similarities between UML elements and AspectJ’s features. The

xtension proposed is used in three UML’s diagrams, class diagram,

se case diagram, and sequence diagram. 

.3. Aspect-oriented approaches in legacy systems 

The approaches of Schutter and Adams (2007) and Chen et al.

2010) are focused on reengineering legacy systems with the

elp of aspect-orientation. The approache of Schutter and

dams (2007) developed a method to generate class and sequence

iagrams using techniques of reflection and decompilation from

he Java binary byte code of AO legacy systems. The authors based

heir approach on the Java Reflection and decompiler tools. 

The approach proposed by Chen et al. (2010) address the com-

ination of AO programming and meta-programming during the

evitalization of legacy systems in Cobol and C. To address these

ombinations, the authors used four use cases that are: (1) re-

erse engineering; (2) recovery of business logic; (3) encapsulation

f business applications for integration with service-oriented en-

ironments; and (4) maintenance and bug-fix of legacy systems.

he authors achieved relevant results for the first three use cases

here AO programming and meta-programming showed that can

ided for the address problems, but for the last use case the AO

rogramming solution present too much of a limitation for Cobol

egacy systems although the problem can be managed reasonably

or C legacy systems. 

Although these publications are model-driven approaches and

heir goals are in showing the reengineering/modernization pro-

ess of legacy systems our work is more focused on showing

ow the modernization process could benefit from KDM aspect-

riented extension. 

. Lessons learned and limitations 

This section discusses the lessons learned of our investigation

nd shows some limitations of modernization processes based on

DM. 

The first lesson learned is that there is a lack of ready-to-use

odernization tools that could help in the validation process of

 modernization scenario. In conducting this research, we learned

hat the power of ADM is strongly influenced by the ability to rep-

esent specific concepts in an appropriate way. For instance, a ma-

or concern in reverse and forward engineering steps derives from

he heterogeneity of how to represent software systems, in which

he data are often uniformly represented as many models. There-

ore, ADM by means of its standards aims at switching from the

eterogeneous scenario to the homogeneous scenario. The big idea

s to retrieve one or several models from a given system, depend-

ng on the needed viewpoints, and then to work directly on these

odels. 

Nowadays there are very few tools that give full support to re-

erse and forward engineering based on ADM scenario. As far as

e know, there are few initiatives to provide more generic inte-

rated reverse engineering tools that can be extended and used to

ifferent scenarios. A tool that we have used herein is MoDisco .

lthough MoDisco is used in this project, its core components sup-

ort discovery just for Java technologies, i.e., there is a lack of tools

hat provides fully support for other implementation technologies

uch as C/C ++ , C# (.NET) or COBOL. In fact, Clause ( Clausen, 2012 )



302 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A  

 

 

 

 

 

 

 

 

 

a  

a  

o  

f  

s  

s  

m

8

 

e  

2  

w  

t  

e  

g  

O

 

w  

K  

f  

e  

s  

a  

c  

r  

a  

g  

h

 

i  

t  

a  

t  

c  

H  

t  

t  

s  

b  

m

 

s  

b  

g  

e  

p  

K  

w  

t  

m

 

g  

p  

m  

b  

t  

t  

t  

s

 

h  

v  

a  

a  
devised a Python discovery based on ADM. However, we could not

find online the source-code to test this discovery. 

Thus, after developing our AO-extensions and performing the

validations that we have shown in this paper, the ideal scenario

would be to perform a real modernization project using the exten-

sions but this was not possible because we neither had an aspect-

oriented discoverer nor a forward engineering tool to convert KDM

models in source-code again. 

The second lesson learned is the importance of a research that

presents how to extend KDM in a light and heavyweight manner.

As we present in the related works section, there is a shortage of

guidelines on how to extend KDM as well as lack of criteria on

how to compare the instantiation process of HW and LW exten-

sions. 

ADM claims KDM can represent all software artifacts, however,

sometimes it is needed to represent specific domain concepts and

that is why there are the extension mechanisms. With the conduc-

tion of our research, we could notice that the choice for an exten-

sion (HW or LW) will depend on the purpose that it will be used

for and for each one there is a set of consequences to be consid-

ered. For instance, the LW extension mechanism is less demanding,

since its creation process requires less effort and its reuse is more

easily adapted in existing tools. In general terms, the main advan-

tage of using the HW extension is due to the quality assurance of

the produced instances. Another advantage of using the LW exten-

sion mechanism is the speed and convenience of adding new be-

haviors in instances of KDM, since its creation process is less labor

intensive if compared to the HW mechanism. 

As a third lesson learned we claim that there is a lack of re-

search about the synergy between KDM and others ADM standard

metamodels. It is noted that KDM is a powerful metamodel that

can be adapted to several domains, so it will only depend on the

software engineer to create a solution that best serves its purpose.

However, KDM is a metamodel to represent software systems ar-

tifacts and it does not provide a graphical visualization of its con-

tent. For this purpose, a modernization engineer should use an-

other metamodel such as UML or Business Process Model and No-

tation (BPMN), depending on the required point of view. 

In other research of our group ( Durelli et al., 2017 ), we eval-

uated the application of refactorings in KDM instances with the

support of UML classes diagrams in an experiment involving seven

systems implemented in Java, by using a tool named Knowledge

Discovery Model-Refactoring Environment (KDM-RE). The systems

used in the experiment were Xerces-J, Jexel, JFreeChart, JUnit,

GanttProject, ArtofIllusion, and JHotDraw. According to the authors,

these seven systems were chosen because they are real-world Java

applications whose sizes range from 16,026 to 240,540 lines of

code. In spite of the fact that, KDM seems to be a robust meta-

model to represent complete systems it is not possible to state that

the results can be generalized for all Java applications instantiated

using KDM and represented in UML classes diagrams. 

As a forth lesson learned we claim that dealing with the num-

ber of errors has brought us a better understanding and knowl-

edge on how to create automated support for the creation of KDM-

O inst ances. We claim that this knowledge have came from two

sources: the definition of what would be considered as an error

and the importance of counting the number of errors. 

Regarding the first part of the sentence, we have defined what

would be an “error” so that we could count the number of errors

the subjects committed. We believe it is not so important the gran-

ularity of the error, but how we are counting them. 

Regarding the second part, that is the importance of counting

the number of errors, we believe there are two important points:

i) Clearly, the most expected situation would be to have an auto-

mated tool for creating the instances of the KDM extensions. How-

ever, the Modernization Engineer, in charge of implementing such
n automated support, must create “scripts” that automate the cre-

tion of instances. The subjects of the experiment played the role

f these scripts and this was very useful for identifying the most

requent errors in the process of creating AO KDM instances. The

econd point is that, doing such an exercise of creating the in-

tances manually, we learned all the steps for the correct imple-

entation of the scripts. 

. Conclusion 

In this paper we presented our investigation on aspect-oriented

xtensions for the Knowledge-Discovery Metamodel ( Santos et al.,

014b ). To conduct this investigation we have developed a heavy-

eight and a lightweight extension and conducted an experiment

hat evaluated the productivity when creating instances of these

xtensions and also when modifying these instances. The main

oal is to deliver the KDM AO extensions created so that Aspect-

riented Modernization Projects can be conducted. 

The experiment has concentrated on analyzing the productivity

hen creating instances (and also modifying them) of these both

DM AO extensions. The tasks were performed programmatically

or the software engineers and an AO Persistence Framework was

mployed ( de Camargo and Masiero, 2008 ). The statistical analy-

is showed that the HW and LW do have impact over the time

nd also the number of errors when creating the instances. So the

hoice between these options must be carefully analyzed. Summa-

izing, when HW extension is employed, the software engineers

re 43% faster than using LW extensions. Besides, the software en-

ineers commit 7.7% less errors if compared to the subjects that

ave used the LW extension. 

Regarding the effort for creating the extensions, we claim that it

s quite similar. The creation of a LW extension requires the instan-

iation of some classes of the kdm package for creating stereotypes

nd tagged values, but none new metaclass is created. Similarly, in

he HW case, one must create new metaclasses that must be in-

luded as part of the KDM. The advantages and disadvantages of

W and LW extensions were already stated many times in litera-

ure, but basically, the main are that LW extensions are more easily

o be incorporated and used in tools, but they provide less precise

emantics. On the other hand, HW extensions are more difficult to

e incorporated in tools, but they are much more precise in se-

antics. 

Although this paper has concentrated on aspect-oriented exten-

ions, the process we have used for creating the extensions can

e generalized, as well as most findings. For example, one of the

eneralizable findings is the perception that the creation of KDM

xtensions for a specific domain can be based on existing UML

rofiles, as we did with Everman’s profile. As the Code Package of

DM has many similarities with UML, it is quite simple to find out

hich KDM metaclass can be used as base metaclass in a new ex-

ension. To assist software engineers in this task with developed a

apping table (UML – KDM) shown in Table 3 . 

The choice of which KDM extension to use (HW or LW) is

uided by several points. Usually, it depends on the goal of the

rojects. For instance, if the HW mechanism is chosen, the new

etaclasses could be instantiated more easily and this provides a

etter correcteness in instance level, but it makes difficult the in-

eroperability with other tools that uses KDM. On the other hand,

he LW extensions is more interoperable but harder to be instan-

iated and the correctness of the models should be granted by the

upported tools that implement it. 

As a main limitation we claim that the ADM approach do not

ave a wide set of tools that works with KDM to facilitate the re-

erse and forward engineering available in the literature. Thus, we

re depending on specific tools and programming languages, such

s MoDisco tool and JAVA programming language. However, we be-



B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 303 

l  

a  

K

 

m  

e  

a  

a  

s  

m  

n  

w  

a  

s  

a  

s  

t  

c  

b  

v

 

b  

s  

t  

p  

t

 

e  

a  

t  

v  

l  

L  

K  

t  

o  

i  

c  

A

 

i  

A  

a

A

 

f  

C

 

n  

T  

F

R

A  

 

B  

 

 

B  

B  

 

B  

 

 

d  

 

 

C  

 

C  

 

 

C  

C  

D  

 

 

D  

 

 

 

D  

 

 

E  

 

H  

 

 

J  

 

 

K  

 

 

K  

 

K  

 

 

 

 

 

 

L  

 

 

L  

L  

M  

 

N  

 

 

O  

O  

P  

 

P  

 

P  

 

ieve that the guidelines provided in this paper could be used in

nother programming language because we explain how to use the

DM to perform the extensions. 

The usage scenario of KDM extensions as well as the right mo-

ent to use them are still not so clear. Along aspect-oriented mod-

rnization projects, instances of the extended KDM will be cre-

ted as a result of refactorings/optimizations/reestructuring tasks

pplied over the legacy KDM (the KDM that represents the legacy

ystem). This happens in the upper right part of the horse shoe

odel. We believe that, in many situations, the instances of the

ew concepts (metaclasses or stereotypes) of the extended KDM

ill be automatically created by the transformation rules. For ex-

mple, a transformation rule could get as input a legacy KDM with

ome packages annotated with crosscutting concerns and generate

spects for each annotated package. However, there are many other

ituations where the software engineers will have to create the

ransformations manually for instantiating the new aspect-oriented

oncepts. In these cases, it is important to know the differences

etween HW and LW extensions and the advantages and disad-

antages of them. 

We are currently studying how KDM and KDM extensions can

e arranged into the architecture of modernization tools. In this

ense, we are developing a Reference Architecture for supporting

he design of this kind of tools ( Santos and de Camargo, 2016 ). As

art of this effort, we are also working on creating a terminology

hat better characterize these tools. 

The experimental analysis presented in this paper has consid-

red the development and maintenance on KDM instances. These

ctivities were performed in Eclipse IDE without the help of a tool

o simplify the codification process. Thus, as a future work we en-

ision the opportunity of developing a modernization tool that al-

ows the automatic instantiation of KDM-AO elements (HW and

W) to easier the creation of aspect-oriented refactorings using

DM. With this modernization tool would be possible to reapply

he experiment with a bigger set of subjects in order to evaluate

ther quality attributes such as usability and quality of KDM-AO

nstances in real company projects. Thus, with this experiment we

ould be able to find out if the modernization process proposed by

DM is suitable in the context of companies. 

As another future work, we intend to conduct other case stud-

es using other aspect-oriented languages such as AspectC ++ and

spectS in order to evaluate if our KDM-AO extensions are generic

nd platform independent enough to represent them. 

cknowledgements 

This study was financed in part by the Coordenação de Aper-

eiçoamento de Pessoal de Nível Superior - Brasil (CAPES) Finance

ode 001 (grant number 88881.131912/2016/0 ). 

Daniel San Martin would like to thank CONICYT (Chile) (grant

umber 72170024 ). André Landi would like to thank S2IT SOLU-

IONS CONSULTORIA LTDA. Valter Camargo would like to thank

APESP (process number 2016/03104-0 ). 

eferences 

hmed, R.A.M. , Aboutabl, A.E. , Mostafa, M.-S.M. , 2017. Extending unified modeling

language to support aspect-oriented software development. Int. J. Adv. Comput.
Sci. Appl. 8 (1), 208–215 . 

aresi, L., Miraz, M., 2011. A component-oriented metamodel for the modernization
of software applications. In: 2011 16th IEEE International Conference on Engi-

neering of Complex Computer Systems, pp. 179–187. doi: 10.1109/ICECCS.2011.25 .
ates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects mod-

els using lme4. J. Stat. Softw. 67 (1), 1–48. doi: 10.18637/jss.v067.i01 . 

ianchi, A., Caivano, D., Marengo, V., Visaggio, G., 2003. Iterative reengineering of
legacy systems. IEEE Trans. Softw. Eng. 29 (3), 225–241. doi: 10.1109/TSE.2003.

1183932 . 
runeliere, H., Cabot, J., Jouault, F., Madiot, F., 2010. Modisco: a generic and exten-

sible framework for model driven reverse engineering. In: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering. ACM,
New York, NY, USA, pp. 173–174. doi: 10.1145/1858996.1859032 . 

e Camargo, V.V., Masiero, P.C., 2008. An approach to design crosscutting framework
families. In: Proceedings of the 2008 AOSD Workshop on Aspects, Components,

and Patterns for Infrastructure Software. ACM, New York, NY, USA, pp. 3:1–3:6.
doi: 10.1145/1404891.1404894 . 

hagas, F. , Durelli, R. , Terra, R. , Camargo, V. , 2016. KDM as the underlying meta-
model in architecture-conformance checking. In: Proceedings of the 30th Brazil-

ian Symposium on Software Engineering. ACM, pp. 103–112 . 

hen, L., Wang, J., Xu, M., Zeng, Z., 2010. Reengineering of java legacy system based
on aspect-oriented programming. In: 2010 Second International Workshop on

Education Technology and Computer Science, vol. 3, pp. 220–223. doi: 10.1109/
ETCS.2010.298 . 

lausen, A. , 2012. Transforming Python into KDM to Support Cloud Conformance
Checking. Ph.D. thesis. Kiel University . 

ook, T.D. , Campbell, D.T. , 1979. Quasi-Experimentation: Design & Analysis Issues

for Field Settings. Houghton Mifflin . 
urelli, R.S., Santibáñez, D.S.M., Delamaro, M.E., de Camargo, V.V., 2014a. Towards

a refactoring catalogue for knowledge discovery metamodel. In: Proceedings of
the 2014 IEEE 15th International Conference on Information Reuse and Integra-

tion (IEEE IRI 2014), pp. 569–576. doi: 10.1109/IRI.2014.7051940 . 
urelli, R.S., Santibáñez, D.S.M., Marinho, B., Honda, R., Delamaro, M.E., Anquetil, N.,

de Camargo, V.V., 2014b. A mapping study on architecture-driven moderniza-

tion. In: Proceedings of the 2014 IEEE 15th International Conference on Infor-
mation Reuse and Integration (IEEE IRI 2014), pp. 577–584. doi: 10.1109/IRI.2014.

7051941 . 
urelli, R.S. , Viana, M.C. , de S. Landi, A. , Durelli, V.H.S. , Delamaro, M.E. , de Ca-

margo, V.V. , 2017. Improving the structure of KDM instances via refactorings: an
experimental study using KDM-re. In: Proceedings of the 31st Brazilian Sympo-

sium on Software Engineering. ACM, New York, NY, USA, pp. 174–183 . 

vermann, J., 2007. A meta-level specification and profile for AspectJ in UML. In:
Proceedings of the 10th International Workshop on Aspect-oriented Modeling.

ACM, New York, NY, USA, pp. 21–27. doi: 10.1145/1229375.1229379 . 
ohenstein, U.D. , Jäger, M.C. , 2009. Using aspect-orientation in industrial projects:

appreciated or damned? In: Proceedings of the 8th ACM International Confer-
ence on Aspect-oriented Software Development, pp. 213–222 . New York, NY,

USA. 

únior, J.U., Penteado, R.D., de Camargo, V.V., 2010. An overview and an empirical
evaluation of UML-AOF: an UML profile for aspect-oriented frameworks. In: Pro-

ceedings of the 2010 ACM Symposium on Applied Computing. ACM, New York,
NY, USA, pp. 2289–2296. doi: 10.1145/1774088.1774564 . 

azman, R. , Woods, S.G. , Carrière, S.J. , 1998. Requirements for integrating soft-
ware architecture and reengineering models: Corum II. In: Proceedings of the

Working Conference on Reverse Engineering (WCRE’98). IEEE Computer Society,

Washington, DC, USA, pp. 154–160 . 
iczales, G. , Lamping, J. , Mendhekar, A. , Maeda, C. , Lopes, C. , Loingtier, J.-M. , Ir-

win, J. , 1997. Aspect-oriented programming. In: ECOOP’97–Object-Oriented Pro-
gramming, pp. 220–242 . 

ulesza, U., Soares, S., Chavez, C., Castor, F., Borba, P., Lucena, C., Masiero, P.,
Sant’Anna, C., Ferrari, F., Alves, V., Coelho, R., Figueiredo, E., Pires, P.F., Deli-

cato, F., Piveta, E., Silva, C., Camargo, V., Braga, R., Leite, J., Lemos, O., Men-
donça, N., Batista, T., Bonifácio, R., Cacho, N., Silva, L., von Staa, A., Sil-

veira, F., Valente, M.T., Alencar, F., Castro, J., Ramos, R., Penteado, R., Rubira, C.,

2013. The crosscutting impact of the AOSD Brazilian research community. J.
Syst. Softw. 86 (4), 905–933 . SI : Software Engineering in Brazil: Retrospec-

tive and Prospective Views URL http://www.sciencedirect.com/science/article/ 
pii/S0164121212002427 . doi: https://doi.org/10.1016/j.jss.2012.08.031 . 

andi, A. , Chagas, F. , Santos, B.M. , Costa, R.S. , Durelli, R. , Terra, R. , de Camargo, V.V. ,
2017. Supporting the specification and serialization of planned architectures in

architecture-driven modernization context. In: 2017 IEEE 41st Annual Computer

Software and Applications Conference (COMPSAC), pp. 327–336 . 
ehman, M.M. , 1996. Laws of software evolution revisited. In: Montangero, C. (Ed.),

Software Process Technology. Springer, Berlin, Heidelberg, pp. 108–124 . 
esiecki, N. , 2006. Applying AspectJ to J2EE application development. IEEE Softw. 23

(1), 24–32 . 
artín Santibáñez, D.S., Durelli, R.S., de Camargo, V.V., 2015. A combined approach

for concern identification in KDM models. J. Braz. Comput. Soc. 21 (1), 10.

doi: 10.1186/s13173-015-0030-3 . 
ormantas, K., Sosunovas, S., Vasilecas, O., 2012. An overview of the knowledge

discovery meta-model. In: Proceedings of the 13th International Conference
on Computer Systems and Technologies. ACM, New York, NY, USA, pp. 52–57.

doi: 10.1145/2383276.2383286 . 
MG, 2009. Architecture-Driven Modernization Standards Roadmap doi: 10.1016/j.

gie.2008.12.063 . Avaliable at http://adm.omg.org/ . 

MG, 2016. OMG ® Specifications Business Modeling Specifications . Available at
http://www.omg.org/spec/ . 

érez-Castillo, I. G.-R., Piattini, M., 2011. Modern Software Engineering Concepts
and Practices: Advanced Approaches, Architecture-Driven Modernization. Chap-

ter 475–103. doi: 10.4018/978- 1- 60960- 215- 4 . 
érez-Castillo, R., de Guzmán, I.G.-R., Piattini, M., 2011. Knowledge discovery

metamodel-ISO/IEC 19506: a standard to modernize legacy systems. Comput.

Stand. Interfaces 33 (6), 519–532. doi: 10.1016/j.csi.2011.02.007 . 
érez-Castillo, R. , de Guzmán, I.G.-R. , Piattini, M. , Weber, B. , 2012. Integrating event

logs into KDM repositories. In: Proceedings of the 27th Annual ACM Symposium
on Applied Computing. ACM, New York, NY, USA, pp. 1095–1102 . 

https://doi.org/10.13039/501100002322
https://doi.org/10.13039/501100002848
https://doi.org/10.13039/501100001807
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0001
https://doi.org/10.1109/ICECCS.2011.25
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1109/TSE.2003.1183932
https://doi.org/10.1145/1858996.1859032
https://doi.org/10.1145/1404891.1404894
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
https://doi.org/10.1109/ETCS.2010.298
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0010
https://doi.org/10.1109/IRI.2014.7051940
https://doi.org/10.1109/IRI.2014.7051941
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
https://doi.org/10.1145/1229375.1229379
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0015
https://doi.org/10.1145/1774088.1774564
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://www.sciencedirect.com/science/article/pii/S0164121212002427
https://doi.org/10.1016/j.jss.2012.08.031
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0022
https://doi.org/10.1186/s13173-015-0030-3
https://doi.org/10.1145/2383276.2383286
https://doi.org/10.1016/j.gie.2008.12.063
http://adm.omg.org/
http://www.omg.org/spec/
http://doi.org/10.4018/978-1-60960-215-4
https://doi.org/10.1016/j.csi.2011.02.007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028


304 B.M. Santos, A.d.S. Landi and D.S. Santibáñez et al. / The Journal of Systems and Software 149 (2019) 285–304 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z  

 

B  

D  

i  

N  

a  

j  

t

A  

w  

C  

w  

f

D  

n  

 

 

a  

E  

g  

r  

s  

R  

 

U  

w

V  

F  

r  

t  

P  

2  

g

Qaisar, Z.H. , Anwar, N. , Rehman, S.U. , 2013. Using UML behavioral model to support
aspect oriented model. J. Softw. Eng. Appl. 6 (03), 98 . 

Rausch, A. , Rumpe, B. , Hoogendoorn, L. , 2003. Aspect-oriented framework modeling.
In: Proceedings of the 4th AOSD Modeling with UML Workshop (UML Confer-

ence 2003) . 
Sadovykh, A., Vigier, L., Hoffmann, A., Grossmann, J., Ritter, T., Gomez, E., Es-

tekhin, O., 2009. Architecture driven modernization in practice 150; study re-
sults. In: 2009 14th IEEE International Conference on Engineering of Complex

Computer Systems, pp. 50–57. doi: 10.1109/ICECCS.2009.39 . 

Santos, B.M. , de Camargo, V.V. , 2016. A reference architecture for KDM-based mod-
ernization tools. In: Proceedings of VI Workshop de Teses e Dissertações do CB-

SOFT (WTDSOFT 2016), pp. 1–9 . 
Santos, B.M. , Durelli, R.S. , Honda, R.R. , Camargo, V.V. , 2014a. Investigating

lightweight and heavyweight KDM extensions for aspect-oriented modern-
ization. In: 11th Workshop on Software Modularity (WMod), Maceió, Brazil,

pp. 1–12 . 

Santos, B.M., Honda, R.R., Durelli, R.S., d. Camargo, V.V., 2014b. KDM-AO: an aspect-
oriented extension of the knowledge discovery metamodel. In: 2014 Brazilian

Symposium on Software Engineering, pp. 61–70. doi: 10.1109/SBES.2014.20 . 
Schutter, K.D., Adams, B., 2007. Aspect-orientation for revitalising legacy busi-

ness software. Electron Notes Theor. Comput. Sci. 166, 63–80 . Proceedings
of the ERCIM Working Group on Software Evolution (2006). doi: https:

//doi.org/10.1016/j.entcs.20 06.08.0 02 URL http://www.sciencedirect.com/science/

article/pii/S1571066106005299 . 
Shahshahani, P.M., 2011. Extending the Knowledge Discovery Metamodel to Support

Aspect-Oriented Programming. Concordia University Master’s thesis . URL http:
//spectrum.library.concordia.ca/7329/ . 

Soares, S., Laureano, E., Borba, P., 2002. Implementing distribution and persis-
tence aspects with AspectJ. SIGPLAN Not. 37 (11), 174–190. doi: 10.1145/583854.

582437 . 

Stein, D. , Hanenberg, S. , Unland, R. , 2002. A UML-based aspect-oriented design no-
tation for AspectJ. In: Proceedings of the 1st international conference on Aspec-

t-oriented software development. ACM, pp. 106–112 . 
Ulrich, W.M. , Newcomb, P. , 2010. Information Systems Transformation: Architec-

ture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA . 

Visaggio, G., 2001. Ageing of a data-intensive legacy system:symptoms and reme-

dies. J. Softw. Mainten. 13 (5), 281–308 . URL http://dl.acm.org/citation.cfm?id=
565153.565154 . 

Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J., 2011. The aligned rank transform
for nonparametric factorial analyses using only Anova procedures. In: Proceed-

ings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
New York, NY, USA, pp. 143–146. doi: 10.1145/1978942.1978963 . 

Wohlin, C. , Runeson, P. , Höst, M. , Ohlsson, M.C. , Regnell, B. , Wesslén, A. , 20 0 0. Ex-

perimentation in Software Engineering: An Introduction. Kluwer Academic Pub-
lishers, Norwell, MA, USA . 
akaria, A .A . , Hosny, H. , Zeid, A. , 2002. A UML extension for modeling aspect-ori-
ented systems. In: International Workshop on Aspect-Oriented Modeling with

UML, Germany . 

runo Marinho Santos is graduated in information systems at Faculdade Integral

iferencial (FACID) in 2010 and he obtained his master degree in computer science
n software engineering area at Federal University of São Carlos (UFSCar) in 2014.

owadays, he is a Ph.D. student at UFSCar. He has experience in computer science

rea, with emphasis in Computation Systems, acting mainly in the following sub-
ects: Aspect-Oriented Modernization, Architecture-Driven Modernization, Crosscut-

ing Frameworks, Knowledge Discovery Metamodel, and metamodel extensions. 

ndré de Souza Landi is a system analyst at S2IT SOLUTIONS CONSULTORIA LTDA

orking in a national project of UOL. He finished his master’s at University of São
arlos - UFSCar/DC in 2018. Nowdays, he is researching about the topics of Soft-

are Architecture, Modularity, Model-Driven Engineering and new techniques and

ramework for the Java language. 

aniel San Martín was chief information security officer in the Information Tech-

ology Department at Universidad Austral, Valdivia, Chile until February 2016. Prior
to joining the IT department, he was project manager and Information Analyst in

several public and private business like Mining Industry, Educational Institutions
nd IT Consultory. He received a B.S. degree in Engineering Science and Computer

ngineering from Universidad Católica del Norte, Antofagasta, Chile and M.Sc. de-

ree in computer science from Universidade Federal de São Carlos, SP, Brazil. Cur-
ently, he is a Ph.D. Student at Universidade Federal de São Carlos, Brazil. His re-

earch interests in computer science are in the area of software engineering with
special interest in adaptive systems. 

afael S. Durelli is professor at Science Computer Department of Federal Univer-
sity of Lavras (UFLA) in Brazil. He finished his Ph.D. at University of São Paulo -

SP/ICMC in 2016. He is a member of PqES/DCC (Pesquisa em Engenharia de Soft-

are). 

alter Vieira de Camargo is an associate professor at Computing Department of the

ederal University of São Carlos (UFSCar) in Brazil. He has co-authored around 130
esearch papers, covering the topics of Software Architecture, Software Moderniza-

ion, Adaptive Systems, Modularity and Model-Driven Engineering. He finished his
h.D. in 2006 and participated as a visiting researcher at University of Twente in

013. He has also coordinated the AdvanSE (Advanced Research on Software En-

inering) Group since 2009. 

http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0030
https://doi.org/10.1109/ICECCS.2009.39
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
https://doi.org/10.1109/SBES.2014.20
https://doi.org/10.1016/j.entcs.2006.08.002
http://www.sciencedirect.com/science/article/pii/S1571066106005299
http://spectrum.library.concordia.ca/7329/
https://doi.org/10.1145/583854.582437
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0039
http://dl.acm.org/citation.cfm?id=565153.565154
https://doi.org/10.1145/1978942.1978963
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0043

	Evaluating the extension mechanisms of the knowledge discovery metamodel for aspect-oriented modernizations
	1 Introduction
	2 ADM & KDM
	2.1 Code package
	2.2 Kdm package
	2.3 Extension alternatives for KDM
	2.3.1 Lightweight extensions
	2.3.2 Heavyweight extensions

	2.4 Aspect-Oriented modernization scenario

	3 Aspect-oriented extensions of KDM
	3.1 The lightweight AO extension
	3.2 The heavyweight AO extension

	4 Evaluation
	4.1 Method
	4.1.1 Participants
	4.1.2 The aspect-oriented framework
	4.1.3 Selection of variables
	4.1.4 The planning of the experiment

	4.2 Operational steps of the experiment
	4.2.1 Preparation of the experiment
	4.2.2 Execution of the experiment

	4.3 Data validation of development activities
	4.3.1 On time variable
	4.3.2 On error variable

	4.4 Data validation of maintenance activities
	4.4.1 On time variable
	4.4.2 On error variable

	4.5 Discussion of results

	5 Threats to validity
	5.1 Internal validity
	5.2 External validity
	5.3 Conclusion validity
	5.4 Construct validity

	6 Related works
	6.1 Specific approaches - KDM extensions
	6.2 Generic approaches - UML extensions
	6.3 Aspect-oriented approaches in legacy systems

	7 Lessons learned and limitations
	8 Conclusion
	Acknowledgements
	References


