The Journal of Systems and Software 149 (2019) 285-304

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

SOFTWARE

The Journal of Systems and Software .

Evaluating the extension mechanisms of the knowledge discovery A
metamodel for aspect-oriented modernizations e

Bruno M. Santos®*, André de S. Landi®, Daniel S. Santibafiez? Rafael S. Durelli¢,

Valter V. de Camargo*?

3 Federal University of Sdo Carlos, Sdo Carlos, SP, Brazil
b S2IT SOLUTIONS CONSULTORIA LTDA, Araraquara, SP, Brazil
¢ Federal University of Lavras, Lavras, MG, Brazil

ARTICLE INFO ABSTRACT

Article history:

Received 15 April 2018

Revised 18 September 2018
Accepted 12 December 2018
Available online 12 December 2018

Keywords:

Aspect-oriented modernization
Knowledge discovery metamodel
Legacy systems

Heavyweight extension
Lightweight extension

OMG

Crosscutting concerns are an intrinsic problem of legacy systems, hindering their maintenance and evo-
lution. A possible solution is to modernize these systems employing aspect-orientation, which provides
suitable abstractions for modularizing these kind of concerns. Architecture-Driven Modernization is a
more specific kind of software reengineering focused on employing standard metamodels along the whole
process, promoting interoperability and reusability across different tools/vendors. Its main metamodel is
the Knowledge Discovery Metamodel (KDM), which is able to represent a significant amount of system
details. However, up to this moment, there is no extension of this metamodel for aspect-orientation,
preventing software engineers from conducting Aspect-Oriented Modernizations. Therefore, in this paper
we present our experience on creating a heavyweight and a lightweight extension of KDM for aspect-
orientation. We conducted two evaluations. The first one showed all aspect-oriented concepts were rep-
resented in both extensions. The second one was a experiment, in which we have analyzed the produc-
tivity of software engineers using both extensions. The results showed that the heavyweight extension
propitiate a more productive environment in terms of time and number of errors when compared to the

lightweight one.

© 2018 Published by Elsevier Inc.

1. Introduction

For software systems to keep meeting the requirements previ-
ously established it is necessary constant evolution or they will
no longer fulfill their role properly (Lehman, 1996). Many orga-
nizations have systems that, despite presenting the phenomena
of erosion and aging, still provide significant value for the or-
ganizations. These systems are usually referred to “legacy sys-
tems”. The erosion and aging consists in a system’s detrition in
consequence of successive and bad managed modifications in the
source-code (Visaggio, 2001; Bianchi et al., 2003; Pérez-Castillo
and Piattini, 2011).

For some organizations, the complete substitution of their sys-
tem has a high risk and consumes a large amount of resources,
making this alternative unfeasible. On the other hand, system

* Corresponding author at: Computer Department, Rodovia Washington Luis, Sdo
Carlos, 13565-905 SP, Brazil.
E-mail addresses: bruno.santos@ufscar.br (B.M. Santos), andre.landi@s2it.com.br
(A.d.S. Landi), daniel.santibanez@ufscar.br (D.S. Santibafiez), rafael.durelli@dcc.
ufla.br (R.S. Durelli), valtervcamargo@ufscar.br (V.V. de Camargo).

https://doi.org/10.1016/j.js5.2018.12.011
0164-1212/© 2018 Published by Elsevier Inc.

reengineering is an alternative that is able to extend the system’s
life cycle and it is more feasible economically (Pérez-Castillo et al.,
2011).

However, traditional reengineering processes lacks formaliza-
tion and standardization on how to develop tools and how to make
them work together, leading software engineers to create their
own proprietary solutions, which are difficult (or even impossi-
ble) to be reused, hindering the productivity of the team (Pérez-
Castillo et al., 2011).

In 2003, the Object Management Group (OMG)' created a
task force to evolve the traditional reengineering processes, for-
malizing and preparing them to be supported by models (OMG,
2009, 2016). Therefore the term Architecture-Driven Moderniza-
tion (ADM) came out as a solution to the standardization prob-
lem (OMG, 2009, 2016).

Architecture-Driven Modernization advocates modernization
processes must employ MDA (Model-Driven Architecture) con-
cepts along the process: Platform-Specific Model (PSM), Platform-

1 OMG is an international organization that approves open standards to object
oriented applications since 1989.

https://doi.org/10.1016/j.jss.2018.12.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.12.011&domain=pdf
mailto:bruno.santos@ufscar.br
mailto:andre.landi@s2it.com.br
mailto:daniel.santibanez@ufscar.br
mailto:rafael.durelli@dcc.ufla.br
mailto:valtervcamargo@ufscar.br
https://doi.org/10.1016/j.jss.2018.12.011

286 B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

Independent Model (PIM) and Computational-Independent Model
(CIM). The goal is to rise the abstraction level to work in a
technology-independent manner. Thus, the main idea is to repre-
sent the system to be modernized in models and conduct analysis
and transformations on these models (Pérez-Castillo et al., 2011).

The Knowledge Discovery Metamodel (KDM) is the main ADM
metamodel and its goal is to represent all systems characteris-
tics, from low level details (like lines of code and programming
structures) to higher level concepts (like architectural modules and
business processes). In fact, KDM can be seen as a multimodel
since it incorporates other metamodels and each one is responsible
for representing a different system view.

Originally (and purposely) KDM does not include metaclasses
for specifying particular domains or technologies, such as web
services, multi-agent systems and aspect-oriented programming
(AOP). However, it can be adapted in two different ways. The first
one is by extending it in a lightweight (LW) manner by using
stereotypes and tag values. The second one is by extending it in
a heavyweight (HW) manner by changing the metamodel creating
new metaclasses and/or modifying the existing ones.

When a legacy system presents modularization problems, usu-
ally due to the presence of crosscutting concerns, a candidate tech-
nology to be used in the modernization process is aspect-oriented
software development (AOSD). AOSD is a relevant development
methodology that has a significant impact on the community re-
search and it also has a great number of publications around the
world (Kulesza et al., 2013). There are also publications that re-
ports on real usage of AOSD in industrial projects (Lesiecki, 2006;
Hohenstein and Jager, 2009). Important frameworks such as Spring
and JBoss utilize aspect-oriented concepts, for example, a typical
application might have a security policy that prevents a user from
executing a number of operations unless the user has the correct
privileges.

Even though the current KDM was devised to be a com-
mon intermediate representation for existing software systems
its current version does not support the specification and in-
stantiation of aspect-oriented concepts during modernization pro-
cesses (Durelli et al., 2014b). Nowadays, KDM neither contain spe-
cific metaclasses nor stereotypes to fully support and represent
aspect-oriented concepts such as: join points, advices, aspects, etc.

Moreover, we observe lack of studies in literature about: (i)
representation of AOP in KDM (Shahshahani, 2011) and (ii) com-
parisons between different extension mechanisms of KDM. Re-
garding the first point, this lacking makes aspect-oriented mod-
ernizations an error-prone activity. This happens because the ab-
sence of specific metaclasses for representing aspect-oriented con-
cepts needs to be compensated by representing the same aspect-
oriented concepts using canonical metaclasses and trying to differ-
entiating them somehow. This clearly can lead to misunderstand-
ings and the insertion of errors.

In order to overcome these limitations in this paper we pro-
posed two KDM extension for AOP - a lightweight and a heavy-
weight. By using these extension, the modernization into object-
oriented systems to aspect-oriented ones becomes feasible, since it
is possible to represent the aspect-oriented concepts (join points,
advices, aspects and others) in a clear way in the KDM instance
that represents the aspect-oriented version of the system. Another
goal is to investigate both extensions, showing evidences of their
suitability. To support this goal, a comparative study was per-
formed to list the advantages/disadvantages and main differences
between both extensions.

Summing up, the primary contribution of this article is to re-
port the experience we have gained from creating both a LW and
a HW Aspect-Oriented Extension of KDM. The secondary contri-
bution is the experiment we have conducted whose goal was to
answer the following Research Question (RQ):

RQ - Which of the KDM AOP extensions (LW or HW) requires
less effort (time) and leads to less errors when creating and
maintaining their instances?

In the following, we present the background related to ADM
and KDM, extension alternatives for KDM and aspect-oriented
modernization scenario. Then, in Section 3 we present the aspect-
oriented extensions of KDM. After, in Section 4 we discuss the
evaluation of the approach. In Section 5 we discuss about threats
to validity of our research. In Section 6 we describe some related
works, Section 7 presents the lesson learned herein, and finally in
Section 8 we draw some conclusions and describe plans for future
work.

2. ADM & KDM

Architecture-Driven Modernization (ADM) is a trend of reengi-
neering processes that considers standard metamodels and MDA
concepts (like PIM, PSM and CIM) along the process. According to
OMG, the main reason of this problem is the lack of standardiza-
tion, hindering the productivity of teams, preventing the reuse of
algorithms and techniques and also compromising the interoper-
ability among modernization tools from different vendors (Ulrich
and Newcomb, 2010; Sadovykh et al., 2009).

The modernization process supported by ADM involves three
phases and it is similar to a horseshoe (Kazman et al., 1998): (i) re-
verse engineering, (ii) restructuring, and (iii) forward engineering,
as can be seen in Fig. 1. Starting from the lower left side, in reverse
engineering part, the knowledge is extracted from legacy systems
and PSM is generated. The PSM is used as a base to generate a PIM
that conforms to an ADM metamodel named Knowledge Discovery
Metamodel. After obtaining the PIM, one can generate the CIM go-
ing up to the level of abstraction. Thus, during reverse engineering,
transformations are done aiming to get a high-level representation
of the system, independently of the adopted platform.

In restructuring phase, it is possible to conduct refactor-
ing (Durelli et al., 2017, 2014a), optimization (Landi et al., 2017;
Chagas et al., 2016), and also insert new business rules in the sys-
tem. Please note that this restructuring phase can be performed
in any level of the horseshoe (PSM, PIM and CIM level). The out-
put is a new target model without the problems previously identi-
fied, which can be called “a modernized model” in any level of the
horseshoe.

In the sequence, we can proceed to the forward engineering
phase, wherein the models are resubmitted to a set of transfor-
mations to reach the source-code level again.

The PIM and CIM abstractions can be represented by the main
ADM metamodel, called Knowledge Discovery Metamodel (KDM)?.
The KDM is a metamodel of common intermediate representation
to existent systems and its operating environments. Using this rep-
resentation it is possible exchange systems representation between
platforms and languages aiming to analyze, to standardize, and to
transform existing systems (OMG, 2016).

The KDM can represent physical and logical software artifacts
in different abstractions levels and it is formed by twelve packages
organized in four layers: (i) infrastructure, (ii) program elements,
(iii) runtime resources, and (iv) abstractions. In Fig. 2 it is shown
the KDM architecture with its layers (right side) and the internal
packages, which can also be seen as sub-metamodels because each
package represents a different system’s view (Normantas et al.,
2012).

2 Formal specification of KDM: https://www.omg.org/spec/KDM/About-KDM]/.

https://www.omg.org/spec/KDM/About-KDM/

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304 287

Reestructuring
Source CIM | pefactoring and optimization > Target CIM
Model Model
(=)} - oy
€ | Abstract Refine o
= S
o Source PIM Target PIM s
— Refactoring and optimization —>

o Model Model o
£ L€ M 3
g‘ Abstract Knowledge Discovery Metamodel (KDM) Refine m
w S EE— EEEEEEEEE—— =
Source PSM Target PSM Q
— Refactoring and optimization —» =
3 Model Model 3

v S
o A G 4
> Recovery enerate o
2 2
& | Legacy system | [Improved system | @

Fig. 1. Process flow of modernization supported by ADM (Pérez-Castillo et al., 2011).

Conceprual 1 Buid I Structure ke

]
] g e
T

)

Runtime Resource

Infrastructure
Layer

Fig. 2. KDM’s architecture. Adapted from Pérez-Castillo et al. (2011).

In this paper, the main goal is to represent the AOP concepts
in KDM. To develop a Heavyweight (HW) KDM extension that rep-
resents the AOP concepts it is necessary extend some metaclasses
from Code package, located in programs elements layer. Regarding
the Lightweight (LW) extension, the package to be used is the Kdm
Package from infrastructure layer.

2.1. Code package

The Code package defines a set of metaclasses, whose purpose
is to represent implementation-level program units and their as-
sociations. The package also includes metaclasses that represent
common program elements supported by various programming
languages, such as: data types, classes, procedures, macros, proto-
types, and templates.

In a given instance of KDM, each element of the Code package
represents some construct in a programming language, determined
by the programming language used in the system. The Code Pack-
age consists of 24 classes and contains all the abstract elements for
modeling the static structure of the source code.

In Table 1 is depicted some of them. This table identifies KDM
metaclasses possessing similar characteristics to the static struc-
ture of the source code. Some metaclasses can be direct mapped,
such as class and interface from OO language, which can be eas-

Table 1
Mapping between code elements and the KDM Meta-
classes.

Code element Metaclass

Class ClassUnit

Interface InterfacelUnit

Method MethodUnit

Attribute MemberUnit/StorableUnit
Parameter ParameterUnit

Association KdmRelationship

ily mapped to the ClassUnit and InterfaceUnit metaclasses
from KDM.

2.2. Kdm package

Kdm package describes several infrastructure elements that are
present in each KDM instance. Together with the elements defined
in the Core package these elements constitute the so-called KDM
Framework. The remaining KDM packages provide meta-model el-
ements that represent various elements of existing systems.

Kdm package is a collection of classes and associations that de-
fine the overall structure of KDM instances. From the infrastruc-
ture perspective, KDM instances are organized into segments and

288 B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

Element
(from core)

l

TagDefinition Stereotype
g _ +tag yp_ *stereotype ey tensionFamily
-tag : String [0.* |-name : String [0..* R .
-type : String 1|-type : String 7*I-name : String
Tags Stereotypes

+stereotype 0..*

ExtendedValue| o

+taggedValue
*

0..* Extension

ModelElement

ExtendedValues

(from core)

Fig. 3. Lightweight extension metaclasses.

then further into specific models. Kdm package consists of the fol-
lowing five class diagrams: (i) Framework - defines the basic el-
ements of the KDM framework, (ii) Audit - defines audit infor-
mation for KDM model elements, (iii) Annotations - provides user-
defined attributes and annotations to the modeling elements, (iv)
Extensions - a class diagram that defines the overall organization
of the lightweight extension mechanism of KDM, and (v) Extend-
edValues - the tagged values used by the lightweight extension
mechanism. We have used the last two class diagrams to create
the lightweight extension mechanism presented herein.

2.3. Extension alternatives for KDM

As already stated there are two ways of extending KDM: (i)
lightweight (LW) and (ii) heavyweight (HW). In the following sub-
sections we detail each of them.

2.3.1. Lightweight extensions

The KDM has a package called “Kdm” that involves a set
of metaclasses for creating lightweight extensions by means of
stereotypes and tagged values. Part of the class diagram of Kdm
Package can be seen in Fig. 3.

The ExtensionFamily metaclass acts as a container for en-
capsulating a set of related stereotypes. The Stereotype meta-
class represents stereotypes, which are ways of annotating meta-
class instances so that they can represent a concept different
from the original meaning. The TagDefinition metaclass rep-
resents the stereotype tags, which are used for adding attributes
in the stereotypes. The ExtendedValue metaclass defines com-
mon properties to TaggedValue and TaggedRef and represents
the value of an attribute.

The precise meaning of each new stereotype is defined out of
the KDM scope and it should be informed by the developers so
the users could properly use the extended representations.

The LW KDM extension mechanism neither allow tags multi-
plicity, tags constraints, nor relationship between tags and stereo-
types. Thus, the engineer responsible for the extension creation
should choose the most specific metaclass to define the stereotype
with the semantics between the element to make sure that the
stereotype make sense.

2.3.2. Heavyweight extensions
Heavyweight extensions consists of creating (or modifying the
existing ones) new metaclasses and incorporate them in the meta-

model. Most of the time, the new metaclasses extend the existing
ones. Usually, heavyweight extensions are much more expressive
than lightweight ones, but they hinder the reusability of the meta-
model instances.

The creation of a heavyweight KDM extension does not require
the existence of a specific package, as occurs in the lightweight
version. It is just necessary to create new metaclasses of modifying
existing ones.

Besides, one can devise metaclasses in any KDM package, i.e.,
one can devises new metaclasses in the Code package, or in the
Structure package, etc.

In the context of this work, the Code KDM package is the cen-
tral package for the heavyweight extension we have created. This
happens because all the concepts we have created were imple-
mentation concepts thus the only package that these new concepts
could fit was Code package.

2.4. Aspect-Oriented modernization scenario

According to Pérez-Castillo and Piattini (2011) there are sev-
eral modernization scenarios that can be conducted to modern-
ize legacy systems: Platform Migration, Application Improvement,
Non-Invasive Application Integration, Data Architecture Migration,
Service-Oriented Architecture Transformation, Language to Lan-
guage Conversion, and Paradigm to Paradigm migration.

The scenario we are dealing herein is the last one since we are
coping with modernizations from Object-Oriented (OO) system to
Aspect-Oriented (AO) ones. It is important to highlight that, in this
scenario, it is not mandatory changing the language, i.e., it is possi-
ble to convert OO systems to AO versions using the same language.
Although not common and, possibly this is not the best alternative,
it can be performed using dependency injections and other alter-
native strategies. The most normal way is to use an aspect-oriented
language, like Aspect] (Kiczales et al., 1997).

The aspect-oriented modernization scenario we are working
with is shown in Fig. 4. In the left lower part, we can find a legacy
system with modularization problems, i.e., there are some cross-
cutting concerns (light gray, dark gray, and black) bad modularized
as they are spread throughout the system modules. The modern-
ization goal is to get an aspect-oriented version in which the mod-
ularization problems are solved. This is represented by the target
system, in which the concerns are now well modularized, as can
be seen in the low right part.

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304 289

Refactorings

Marked Legacy
KDM instance

Aspects in KDM-AO
instance

/&@

{:} Mining
Process

Legacy KDM instance

Sf:g Recovering

Extended KDM
to support AOP

o
©

]

Target KDM instance

3 piemio4

* Process
MoDisco
Tool \

Legacy System

Reverse Engineering

Original KDM

Sundauidu

Target System

Fig. 4. Aspect-oriented modernization scenario.

As any other modernization scenario, it starts by reverse engi-
neering the system into a KDM instance that represents the system
as is, i.e., a representation of the system with the same spreading
and scattering problems presented in the source code. This model
will be called here as “Legacy KDM”.?

As soon as the legacy KDM is recovered, a concern mining pro-
cess it is needed for identifying the source code elements (present
in the KDM model) that contribute to the implementation of the
concerns. This mining process also needs to annotate these el-
ements in the KDM. This process is represented as a gear and
the output is the annotated KDM. An example of a tool that can
be used in this step is the CCKDM*, proposed by Martin San-
tibafiez et al. (2015).

In the sequence, the restructuring phase gets the annotated
KDM as input and performs aspect-oriented refactorings on this
model. The output is a new modernized KDM instance with the
concerns modularized with aspect-oriented abstractions. The goal
of the restructuring phase is to analyze the annotated elements of
the legacy KDM and creating aspect-oriented abstractions that al-
low a better modularization of those concerns.

In the scenario presented in Fig. 4, an AO KDM Extension is
needed for representing the output of the restructuring phase. This
occurs because the AO refactorings get OO elements and need to
write AO ones, thus, the AO abstractions must be available in this
target model. This situation happens with any other modernization
process that reads specific element and needs to write/create a dif-
ferent element, which it is not present in the original version of
the metamodel. Therefore, as can be seen in the figure, the origi-
nal version of KDM supports the phases prior the restructuring and
the AO Extended version supports the activities after the restruc-
turing.

The icon represented by an arrow and a circle shows when the
AO concerns are used. The first time shows the modified KDM
with aspect-oriented concepts, the second time represents some
refactorings using the KDM-AO metamodel, and the third time il-

3 Please note that in this section, we use double quotes (* ") to reference the
elements in the Fig. 4.
4 Available in: https://github.com/dsanmartins/cckdm.

lustrates the target KDM instance that is the refactored system in
KDM model. Note that the others parts of the figure are not treated
in this paper. Also note that the “Recovering Process” is executed
by an existing tool called MoDisco® (Bruneliere et al., 2010) and the
“Mining Process” is executed by CCKDM tool that was previously
developed by Martin Santibafiez et al. (2015).

3. Aspect-oriented extensions of KDM

This section presents the two KDM extensions we have devel-
oped - the lightweight and the heavyweight. The creation of these
two KDM extensions had as the starting point an UML profile for
AOP proposed by Evermann (2007). Evermann’s profile is a well
accept and used profile in the academic area but we also consid-
ered other approaches to compose ours (Soares et al., 2002; Rausch
et al., 2003; Janior et al., 2010). One of the distinguishing charac-
teristics of the AO UML profile proposed by Evermann is the com-
pleteness. It covers most of the Aspect] elements, concentrating not
only on the basic concepts, like Aspects, Pointcuts and Joinpoints,
but also the different types of pointcuts (Prelnitialization Pointcuts,
WithintCode Pointcut, etc) and intertype declarations.

Please note that both extension presented herein are devised
in meta-level. More specifically, in the heavyweight extension new
metaclasses (representing aspect-oriented concepts) are added in
the metamodel. These new metaclasses (representing the AO con-
cepts) extend existing KDM metaclasses. In lightweight extension,
there is no inclusion of new metaclasses or modifications of exist-
ing ones in the metamodel. The extension here is done by means
of the creation of stereotypes and tagged values, but it is also in
the meta-level, since the set of stereotypes created are available
for all KDM instances.

In Fig. 5 there is a class diagram that presents both extensions
we have created - the light and the heavy one. This picture has
been adapted from Evermann (2007) and it is used here to repre-
sent both the new metaclasses we have created in the heavyweight
extension and also the new stereotypes of the lightweight exten-
sion.

5 Available in: https://www.eclipse.org/MoDisco/.

https://www.github.com/dsanmartins/cckdm
https://www.eclipse.org/MoDisco/

290

B.M. Santos, A.d.S. Landi and D.S. Santibdiiez et al./The Journal of Systems and Software 149 (2019) 285-304

<<profile>>
KDM AO Extension

AspectUnit
[ClassUnit]
<<Aspect>>
[Class]

StaticCrossCi eature

-precedes 0..1

- isPrivileged : boolean [1]

- perType : AspectInstantiationType [0..*]
- perPointCut : PointCut [0..1]
- declaredParents : Generalization [0..*]

- declaredImplements : InterfaceRealization [0..*]

N A " " sore e N . itializati i Datatype]
GetPointCutUnit SetPointCutUnit utUnit ut n { .
[MemberUnit] [MemberUnit] [MemberUnit] [MemberUnit] <<StaticCrossCuttingFeature>>|
<<GetPointCut>> <<SetPointCut>> <<Prelnitializati intCut>>| [<<InitializationPointCut>> [Feature]
[StructuralFeature] [StructuralFeature] [StructuralFeature] [StructuralFeature] - onType: Type [1..7]
PropertyPointCutUnit

0.1

-precededBy

WithinCodePointCutUnit
[MemberUnit]
K<WithinCodePointCut>>| £ <ExecutionPointCut>>

ExecutionPointCutUnit

[MemberUnit] [MemberUnit]

<<PropertyPointCut>>
[StructuralFeature]

<<callPointCut>>

ContextExposingPointCutUnit
[MemberUnit]
<<ContextExposingPointCut>>
[StructuralFeature]

CallPointCutUnit
[MemberUnit]

[StructuralFeature]

- field : Property [1..*]

[StructuralFeature] [StructuralFeature]

OperationPointCutUnit
[MemberUnit]
<<OperationPointCut>>
[StructuralFeature]

AdviceExecutionPointCutUnit
[MemberUnit]
<<AdviceExecutionPointCut>>
[StructuralFeature]

- operation: Operation [1..*]

AdviceUnit
[ControlElement]

- argNames : String [1..*] {ordered}

]

ThisPointCutUnit ArgsPointCutUnit
[MemberUnit] [MemberUnit]
<<ThisPointCut>> <<ArgsPointCut>>
[StructuralFeature] [StructuralFeature]

N, LS

TypePointCutUnit
[MemberUnit]
<<TypePointCut>> (

TargetPointCutUnit
[MemberUnit]
<<TargetPointCut>>
[StructuralFeature]

StaticInitializationPointCutUnit
[MemberUnit]
<<StaticInitializationPointCut>>
[StructuralFeature]

PointCutUnit 1
[MemberUnit]
<<PointCut>>
[StructuralFeature]

<<Advice>>
[BehavioralFeature]

-advice
0.*

-pointCut
1

- adviceExecution : AdviceExecutionType

0.
-composee|

CrossCuttingConcern
[Package]
I<<CrossCuttingConcern>>

[Package] 0.
-composite

-selectedPointCut
o0
V\ -selectedBy

[StructuralFeature]

ExceptionPointCutUnit
[MemberuUnit]
<<ExceptionPointCut>>
[StructuralFeature]

- type : Type [1..*] {ordered}

PointCutPointCutUnit CFlowBelowPointCutUnit
[MemberUnit] [MemberUnit]
i< <PointCutPointCut>> K <<CFlowBelowPointCut>>

[StructuralFeature] [StructuralFeature]

WithinPointCutUnit
[MemberUnit]
<<WithinPointCut>>

CompositePointCutUnit
[MemberUnit]
<<CompositePointCut>>
[StructuralFeature]

<<enumeration>>
AdviceExecutionType

<<enumeration>>
PointCutCompositionType

[StructuralFeature]

|

CFlowPointCutUnit
[MemberUnit]

<<enumeration>>
AspectInstantiationType

Around
AdviceBefore

And
(el

- compositionType : PointCutCompositionType

<<CFlowPointCut>>
[StructuralFeature]

perthis
pertarget

AdviceAfterAdvice

Not

percflow
percflowbelow

Fig. 5. Light and heavyweight extensions. Adapted from Evermann (2007).

As can be seen in Fig. 5, each class has four lines in the first
compartment. The first word represents the name of the meta-
class we have created in heavyweight extension. For example,
AspectUnit is a new metaclass we have created in the heavy-
weight extension. The second word, in brackets, is the KDM meta-
class that was chosen to serve as the base class of the current el-
ement. For example, the new AspectUnit metaclass extends the
ClassUnit metaclass from KDM (Santos et al., 2014b).

In lightweight extensions there is not addition of new meta-
classes, just the creation of stereotypes. In order to represent this
in Fig. 5, there is a <<stereotype>> symbol in the third line
of the element. Therefore, all stereotypes shown in Fig. 5 exist in
the lightweight extension. Stereotypes only can be applied on ex-
isting metaclasses, thus the name of the element that the stereo-
type can be applied to is presented in second line. For example, the
stereotype <<aspect>> can only be applied in ClassUnit in-
stances.

In order to provide a different visualization of the extensions,
the Table 2 shows the complete list of metaclasses (heavy) and
stereotypes (light) created. The first column represents all the
metaclasses created in KDM metamodel to materialize the heavy-
weight extension and the second column represents all the stereo-
types of the lightweight extension. The third column represent the
original KDM metaclasses used as base for both extensions.

One of the biggest challenges when extending metamodels is
to choose which metaclass is the most suitable one. As the stereo-
types of Evermann’s profile had already been previously mapped
to UML metaclasses, we decided to take a deeper look and ana-
lyze if this information could be useful. As there are some simi-
larities between UML and the KDM Code Package, the information
was useful. However, to systematize this analysis, we built a map-

ping between both metamodels (UML and KDM), that can be seen
in Table 3.

This mapping shows a semantic correspondence between KDM
and UML metaclasses. In some cases, the mapping is straightfor-
ward, such as Class from UML and ClassUnit from KDM. They
have the same goal of representing classes in an object-oriented
context. However, as KDM can represent higher and lower abstrac-
tion levels than UML, some UML metaclasses do not have just one
candidate in KDM. Besides, there are others that have no equiva-
lent. The Property UML metaclass, for example, has three possi-
ble candidates metaclasses in KDM: StorableUnit, ItemUnit,
and MemberUnit. StorableUnit represents primitive type
variables, ItemUnit represents records, and MemberUnit repre-
sents associations with others classes.

This semantic gap happens because the KDM code package
is in a lower abstraction level than UML. There are also KDM
metaclasses that do not have corresponding metaclasses in UML,
in consequence of the low abstraction level. For example, the
CodeAssembly metaclass is a metaclass that represents a logical
element container, written in machine language, that were build
in a specific operating system or hardware. There is no UML meta-
class for representing this concept.

Table 2 we can see the existing relation between the meta-
classes and also comments about them. As KDM is a metamodel
broader than UML, many relations consider only the code package
from KDM, because this package is the only one that can repre-
sent classes, attributes, methods, relationship and others elements
with static features. Other KDM packages are concentrated in other
dimensions that are also present in UML 2.0, such as user inter-
faces, architecture, and conceptual abstractions, but KDM was de-
signed to support the modernization process. To attend to one of

Table 3
Mapping UML - KDM.

Table 2

Aspect-oriented LW and HW mapping elements.

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

AO metaclasses (Heavyweight)

AO stereotypes and tags (Lightweight)

Base KDM metaclass

AspectUnit

PointCutUnit
CompositePointCutUnit
OperationPointCutUnit
WithinCodePointCutUnit
ExecutionPointCutUnit
CallPointCutUnit
PrelnitializationPointCutUnit
InitializationPointCutUnit
PropertyPointCutUnit
GetPointCutUnit
SetPointCutUnit
AdviceExecutionPointCutUnit
PointCutPointCutUnit
CFlowPointCutUnit
CFlowBelowPointCutUnit
TypePointCutUnit
WithinPointCutUnit
ExceptionPointCutUnit
StaticInitializationPointCutUnit
TargetPointCutUnit
ArgsPointCutUnit
ThisPointCutUnit
ContextExposingPointCuitUnit
CrossCuttingConcern
SetAdviceExecution
SetPointCutCompositionType
SetAspectInstantiationType
StaticCrossCuttingFeature
AdviceUnit

aspectUnit

pointCutUnit
compositePointCutUnit
operationPointCutUnit
withinCodePointCutUnit
executionPointCutUnit
callPointCutUnit
prelnitializationPointCutUnit
initializationPointCutUnit
propertyPointCutUnit
getPointCutUnit
setPointCutUnit
adviceExecutionPointCutUnit
pointCutPointCutUnit
cFlowPointCutUnit
cFlowBelowPointCutUnit
typePointCutUnit
withinPointCutUnit
exceptionPointCutUnit
staticInitializationPointCutUnit
targetPointCutUnit
argsPointCutUnit
thisPointCutUnit
contextExposingPointCuitUnit
crossCuttingConcern
adviceExecutionType (tag)
pointCutCompositionType (tag)
aspectInstantiationType (tag)
staticCrossCuttingFeature
adviceUnit

ClassUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
MemberUnit
Package
TaggedValue
TaggedValue
TaggedValue
Datatype
ControlElement

UML

KDM Comments

Class

Operation

Property

Package

StructuralFeature

BehavioralFeature

Parameter

Relationship

ClassUnit

The metaclass Class from UML intends to represent the same concept of the ClassUnit metaclass

from KDM. The metaclass Class (UML/ Basics package) has four properties: isAbstract,
ownedProperty[*], ownedOperation[*] and superClass. The ClassUnit element, from Code Package
encompasses all of these properties through the AbstractCodeElement class. A ClassUnit may have
any attribute whose type is a concrete class of AbstractCodeElement, like StorableUnit,
MemberUnit, ItemUnit, MethodUnit, CommentUnit, KDMRelationships, etc.

MethodUnit

The semantic of the Operation metaclassfrom UML is closer to the MethodUnitmetaclass from

KDM. This happens beauseOperation (UML/Basics package) is a behavioralelement that has the
following properties: class(specifies the owner class), ownedParameter(Operation’s parameters)
and raisedException(Operation’s exceptions). The MethodUnit class is the ideal element to
represent Operations because itis a behavioral KDM element capable to representthe most diverse
programming languages operations.MethodUnit has attributes like kind (defines the kindof the
operations, for example: abstract, constructor,destructor, virtual, etc.) and export (defines the
accessmodifiers, for example: public, private and protected).

StorableUnit;
ItemUnit;
MemberUnit
Package

Property (UML) represents variables in general (local variables, global variables, arrays,
associations, etc.),while KDM has an element for each kind of Property: primitive type variable
(StorableUnit), records and arrays (ItemUnit) class members (MemberUnit).

A Package in UML (Basics package) is very similarly to a KDM Package (Code Package). Both are

containers for program elements, like classes, and others code elements. A Package could have one
or more classes, and a class could have many others elements, like methods, properties,
comments, etc.

DataElement

StructuralFeature (UML/Core::Abstractions package) is an abstract metaclass that can be specialized

to represent a structural member of a class, like a property. The KDM has the DataElement class
(Code package), that can be specialized to StorableUnit, MemberUnit or ItemUnit.

ControlElement

BehavioralFeature (UML/Core::Abstractions package) is an abstract metaclass that can be

specialized to represent behavioral members of a class. The equivalent class on KDM is the
ControlElement, an abstract class that can be specialized to represent callable elements, including
behavioral elements like MethodUnit.

ParameterUnit

Parameter (UML/ Core:Abstractions) is an abstract metaclass to represent the name and the type

of the element that will be passed by parameter in a behavioral element. On the KDM we can use
the ParameterUnit class. This metaclass can also represent the name, type, position of the
parameter in the signature and the kind of parameter (value or referece).

KDMRelationship

Both Relationship and KDMRelationship metaclasses are abstract metaclasses that can be

specialized to represent some kind of relationship between two elements, like Aggregation,
Generalization, etc.

291

292

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

1 ExtensionFamily AspectConcepts
(O
2 Stereotype AspectUmnit

4 AspectUnit.setName("AspectUnit");

5 AspectUnit.setType("ClasUnit");

6 TagDefinition IsPrivileged
7 AspectUnit.getTag().add(IsPrivileged) ;
8 IsPrivileged.setTag("isPrivileged");

9 IsPrivileged.setType("boolean");

o [...]

KdmFactory.eINSTANCE.createExtensionFamily

KdmFactory.eINSTANCE.createStereotype () ;
3 AspectConcepts.getStereotype () .add (AspectUnit) ;

KdmFactory.eINSTANCE.createTagDefinition () ;

Listing. 1. Creating the AspectUnit stereotype.

our goals, this mapping table shows only the main elements that
were used in the aspect-oriented KDM extensions (KDM AO Exten-
sion), once the full mapping of the ninety metaclasses from code
package would be infeasible. Nevertheless, all the classes from Ev-
ermann’s profile were mapped and are represented in Table 3. In
our website® we provide others mapping tables developed by us.

3.1. The lightweight AO extension

This subsection shows how we have created the Lightweight
AO extension (Santos et al.,, 2014a). In this research the LW ex-
tension was created programmatically by using Java language in
the Eclipse IDE (Integrated Development Environment). As previ-
ously commented, KDM provides a set of metaclasses in a package
called kdm that allows the creation of stereotype families, stereo-
types, and tagged values, as shown in Fig. 3. Stereotype families
are a kind of container for a light weight extension.

In Listing 1 is shown part of the whole source code of the LW
KDM AO Extension. In this listing, only the source code for cre-
ating the AspectUnit stereotype is shown. It is possible see the
creation of three instances in Kdm Package: ExtensionFamily,
Stereotype and TagDefinition. In line 1 it is shown the
creation of an instance of ExtensionFamily element named
AspectConcepts. This element encapsulate all the created
stereotypes to the lightweight KDM AO profile. In the second line
an instance of Stereotype element is shown and it is possible
to see the creation of AspectUnit stereotype. Once a stereotype
is created it is necessary specify the ExtensionFamily that it
belongs to. The source code snippet presented in line 3 adds the
stereotype created in line 2 inside the ExtensionFamily ele-
ment created in line 1.

Lines 4 and 5 are filled with Name and Type values of the
stereotype, which are String type. In this line the setName
value is AspectUnit and represents the name of the stereotype,
differently of what occurs in line 2 that the name AspectUnit
represents an instance of the Stereotype element.

Line 6 the TagDefinition IsPrivileged is created and
in line 7 this tag is attached to the AspectUnit stereotype. In
line 8 and 9 the Tag and Type properties of TagDefinition
element are defined. Once more, the filled values of these elements
are Strings, as is defined by the KDM rules.

All the stereotypes, relationship and attributes shown in
Fig. 5 were programmatically added and properly attached, i.e.,

6 http://advanse.dc.ufscar.br/index.php/research- projects/fapesp-2017.

the stereotypes were attached to an ExtensionFamily and the
relationships and the attributes were attached to their respective
stereotypes. Once all the elements were programmatically created
it was possible to reuse them by means of a Java class with all the
programmed Stereotypes and TagDefinitions.

3.2. The heavyweight AO extension

The procedure for building the heavyweight extension was to
create a new KDM metaclass for each stereotype of Evermann’s
profile (Santos et al., 2014a). The main difference is the base meta-
class used; instead of using the same UML metaclass used by Ev-
ermann, we used our mapping table (see Table 3) to find an equiv-
alent in KDM. For example, if a stereotype in Evermann’s profile
extended the Class metaclass of UML, in our heavyweight exten-
sion the new metaclass should extended the ClassUnit of KDM,
as these classes are equivalent in these metamodels.

As can be seen in Fig. 5, the main aspect-oriented ele-
ments from Evermann’s profile are represented as higher level
classes/stereotypes: CrossCuttingConcern, Aspect, Advice,
Pointcut and StaticCrossCuttingFeature. The remaining
elements are subclasses.

For example, CrosscuttingConcernUnit is a new meta-
class we have created for representing the existence of a cross-
cutting concern, such as persistence, security and concurrence. In
Evermann’s profile this element extends the Package metaclass
from UML. In KDM AO extension this element extends the Package
metaclass from KDM. This KDM metaclass represents a standard
package where it is possible to group aspects, classes and others
elements from AO and OO programming languages.

AspectUnit is a new metaclass for representing an aspect
and it extends the ClassUnit metaclass. The decision to extend
the ClassUnit metaclass is justified because this element has all
the characteristics that an aspect can have, besides, it can support
new elements such as Pointcuts, Advices and inter-type dec-
larations.

AdviceUnit is a new metaclass for representing advices. The
element to represent advices is AdviceUnit, that extends the
ControlElement metaclass. Knowing that advice is an element
that specifies behavior, it is possible to consider an advice as a
method. Nevertheless, advices do not have neither access speci-
fiers (public, private and protected) nor types (constructor, destruc-
tor, etc.). Because of this were decided not to make AdviceUnit
metaclass extend the MethodUnit behavior.

http://advanse.dc.ufscar.br/index.php/research-projects/fapesp-2017

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304 293

Property Value

Abstract Uk false

Default Value it
ESuper Types Q ClassUnit -> Datatype

Instance Type Name |

Interface Uk false

Name 1= AspectUnit

Fig. 6. AspectUnit element properties.

PointCutUnit is a new metaclass for representing
Pointcuts and join points. According to Evermann’s pro-
file, PointCut 1is a structural element and extends a
StructuralFeature metaclass from UML. The KDM also has a
metaclass to represent structural features called DataElement,
which is an abstract metaclass. Their sub-metaclasses are
StorableUnit, MemberUnit, and ItemUnit. As a PointCut
can be abstract, and the StorableUnit and ItemUnit meta-
classes can not, MemberUnit were chose to be the super-
metaclass of PointCutUnit. Besides, other motive that influ-
enced in the choice of using the MemberUnit as super-metaclass
was the fact that the Pointcuts crosscuts others classes, and
the MemberUnit is the KDM metaclass that is used to make
references to members of others classes inside of a determinate
class.

StaticCrossCuttingFeature is new metaclass for rep-
resenting inter-type declaration. In heavyweight extension this
element can extend two metaclasses: StorableUnit and
MethodUnit. Thus, StaticCrossCuttingFeature is capable
of representing not only structural features but also behavioral fea-
tures. Therefore, a StaticCrossCuttingFeature instance can
be an attribute or a method that will be inserted in a determinate
class.

CrossCuttingConcern is a new element that was extended
from Package element of KDM Code Package. However, none at-
tribute or additional relationship were inserted in the new ele-
ment, once its creation aimed only separate the concerns in a KDM
model, without adding behavior.

Creating KDM Extensions. To create the heavyweight KDM AO
extension version the Eclipse IDE and the Framework Eclipse Mod-
eling Framework (EMF) were used. This allowed the edition and
visualization of the original KDM in “.ECORE” format. More details
of this process can be seen in Santos et al. (2014b).

Summarizing, by means of these tools we could insert all the
metaclasses depicted in Fig. 5. In Fig. 6 the AspectUnit meta-
class properties are shown. As we can see, the element created
has some properties that have to be filled, such as Abstract,
ESuperTypes and others. Each new metaclass has its properties
set in different ways, but it has to be in accordance to the pro-
posed profile (KDM AO extension). After the creation of all new
metaclasses in KDM, the heavyweight KDM AO extension plug-in
version were created, allowing the creation of new aspect-oriented
instances of KDM.

In Listing 2 an instantiation example of the heavyweight KDM
AO extension is presented. In line 1 an instance of AspectUnit
metaclass is created, in line 2 it is informed the name of the in-
stance and in line 3 the property IsPrivileged is filled.

Regarding the reuse of heavyweight KDM AO extension plug-in
one should say that it can only be reused in Eclipse tool, once it
was developed in this IDE. However, the AOP mataclasses, proper-
ties, and relationship inserted in the original KDM, can be reused
in any tool that could read XMI source-code from “.ECORE” exten-
sion. By reading the XMI information of the new metaclasses and
by creating a tool/plug-in with these new information, we believe
that it would be possible to create AO KDM instances indepen-
dently of the programming language (AspectC++, AspectS, etc.),
because the metaclasses here created are extensions of the existing
classes, that are platform and language independents.

4. Evaluation

In this section we present an experiment to investigate whether
software engineers productivity (time and errors) is different when
using HW and LW KDM extensions. In this experiment, the sub-
jects had to create and change (apply maintenance modifica-
tions) instances of the both KDM AO extensions we have de-
veloped. All the planning was done according to Wohlin guide-
lines (Wohlin et al., 2000).

As already pointed out in Section 1 our RQ is:

RQ - Which of the KDM AOP extensions (LW or HW) requires
less effort (time) and leads to less errors when creating and
maintaining their instances?

4.1. Method

4.1.1. Participants

The experiment was conducted in the context of a Software En-
gineering course of the Federal University of Sdo Carlos (UFSCar) in
Brazil. The participants (subjects) were 14 graduate candidates in
computer science.

4.1.2. The aspect-oriented framework

In order to simulate a real situation, we had to choose some
aspects, pointcuts and joinpoints to be modeled by the subjects.
Therefore, instead of creating hypothetical elements we decided
to use an existing AO persistence framework (de Camargo and
Masiero, 2008), because it had almost all existing aspect of aspect-
oriented elements. Thus, all the activities performed by the sub-
jects involved the creation and the maintenance of aspects, point-
cuts and joinpoints of this framework.

4.1.3. Selection of variables

The dependent variables are the instantiation time, the mainte-
nance time and the number of errors. Instantiation time is the time
subjects spent to create instances of the extended KDM. Mainte-
nance time is the time subjects spent for modifying (change) exist-
ing KDM-AO instances. The number of errors represents the num-
ber of errors a subject got in each activity.

The independent variables or factors are:

1. KDM AO extensions: There are 2 levels for this factor; the HW
and LW extensions.

2. Activities performed by the subjects: There are 6 levels for the
developing activities and 2 levels for the maintaining activities.
In Table 4, we present the description of the activities.

4.14. The planning of the experiment

The experiment was planned in blocks (Wohlin et al., 2000),
to ensure the subject’s experience did not interfere in the result.
Table 5 presents the experiment organization.

294 B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

3 myAspect.setIsPrivileged(true) ;

1 AspectUnit myAspect = CodeFactory.eINSTANCE.createAspectUnit () ;

2 myAspect.setName ("connectionComposition") ;

Listing. 2. HW extension instance example.

Table 4
Activities performed by the subjects.

Development activities

Activity number Activities description

Creating three different Aspect and associate them with the Crosscutting Concerns created in activity 1.

1 Creating three different CrosscuttingConcerns (security, logging and persistence)

2

3 Creating three different PointCut with a joinpoint each.

4 Creating two different PointCut with two joinpoints each.

5 Creating three different Advice and link them to the PointCuts created in activity 3.
6 Creating five different Inter-Type Declaration.

Maintenance activities

Activity number Activities description

7 Adding three properties in a specific Aspect.

8 Transforming a PointCut with a Joinpoint in a PointCut with two Joinpoints.

Table 5
Groups distribution in relation to the extensions.

Group 1 (7 subjects)

LW AO KDM
HW AO KDM

Group 2 (7 subjects)

HW AO KDM
LW AO-KDM

Phase 1
Phase 2

In Phase 1, the groups 1 and 2 worked in parallel - while group
1 performed the activities (development and maintenance) using
the LW extension, group 2 used the HW one. Once they have fin-
ished the activities, they where allowed to proceed to the second
phase, where the extensions were shift between the groups.

Each group was submitted to both factors, the extensions and
the activities,but in different phases. This was done to verify if the
order impacts the result, i.e, if instantiating an specific KDM ex-
tension prior to the another one lead to different results.

As shown in Table 5, all the activities performed by the subjects
were related to the same context - a persistence framework. The
activities involved the creation of aspects, Pointcuts, join
points, Advices and Intertype declarations of this per-
sistence framework.

The performed activities were divided into development and
maintenance activities. The name of each instance were in-
formed to the subjects during the experiment. The develop-
ment activities are concentrated on creating new KDM AO ele-
ments, while the maintenance ones are focused on changing ex-
isting AO KDM instances. The complete activities can be seen in
https://github.com/Advanse-Lab/KDM-AO.

4.2. Operational steps of the experiment

The experiment was performed in three steps: (i) preparation,
(ii) execution, and (iii) data validation. We explain these steps in
the following subsections.

4.2.1. Preparation of the experiment
In this step, the materials to be used in the experiment were
elaborated’.

7 The artifacts used in the experiment are available in the link: https://github.
com/Advanse-Lab/KDM-AO.

4.2.1.1. Instrumentation. The following documents were developed
to be used in the experiment: (i) Subjects Characterization Form,
to get the professional experience and in the topics related to the
study; (ii) Consent Form, to subjects approval and consent of the
study objectives and the participation terms; (iii) Description of the
Activities with the instructions of its execution; (iv) Guide for Us-
ing the LW and HW Extensions; (v) Mapping table of the Aspect]
elements to LW and HW extensions and (vi) Class diagram of the
extensions, so the subject could know which attributes and rela-
tionships belong to a determinate element.

4.2.1.2. Data collecting instruments. A data collecting form was
elaborated to gather data, in which the subjects should fill all the
required information during the experiment execution. In the same
form, there was a field for qualitative evaluation, so each sub-
ject should report its perception about the difficulties, easiness
and suggestions while using the extension. This was done after
they have finished the experiment. This form was elaborated in
the same file that the activities descriptions of the experiment, so
the subject could access all the information and could record their
conclusion times in the same document.

4.2.1.3. Training and pilot. All the subjects were submitted to train-
ing and pilot sessions prior the real experiment. In the training we
explained about AOP and how to create KDM instances using the
LW and HW extensions. The training took four hours in total; two
hours for explaining about the main topics and two hours for ex-
ercising. The goal was to make them proficient in the creation of
KDM-AO instances (LW and HW). In this day we also handed the
consent and characterization forms to the subjects, so that this in-
formation could be used in the pilot.

In the pilot’'s day, we simulated the activities that would be
performed in the real experiment. These activities helped us on
improving some details, such as the time limit required for each
activity and the way the activities should be distributed. The pi-
lot was organized in groups, the 14 subjects were divided in two
equal groups and each group should use both approaches, but in
different phases.

All the subjects used the same application, i.e., they should cre-
ate aspects with generic names and without context, for exam-
ple, Aspect A, Pointcut ptl, etc. This was different from the

https://www.github.com/Advanse-Lab/KDM-AO

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304 295

Table 6
Subjects distribution according to their punctuation.

Punctuation (Points based on their skills)

Subject Verylow0a10 Low 11 a20 Normal 21 a30 High 31 a40 Very High 41 a 50

1 24

2 21

3 27

4 4

5 19

6 21

7 9

8 24

9 29

10 32

1 42

12 20

13 10

14 35

Total 2 2 6 2 2
real experiment where the created aspects were related to the AO Table 7 o))
persistence framework. The training and pilot day were conducted Means and standard deviation for time variable of development
. . . activities.
in such way that in the end all the subjects could use both ap-
proaches. Technique Activity Time.mean (min) Time.sd (min)

In the real experiment day we basically used the same steps HW Actv-1 2.571429 0.7559289
of the pilot; the main difference were: (i) the activities and their HW Actv-2 3.642857 1.0082081
descriptions were delivered to the subjects in a formal document, ﬁx :Ct"'i 2-35’2208060 }-222216287
instead of explaining them by means of a presentation, and (ii) all HW AEEX:S 4857143 25075474
of the activities that should be done were explained in the begin- HW Actv-6 3.642857 12157393
ning of the experiment, so this could improve the subjects’ time w Actv-1 3.428571 1.0894096
and avoid time interruptions. w Actv-2 4285714 0.6112498
Once the subjects have started the activities, they could only m :Etz'i Zg;ﬁgg g'g;%gg

solve their doubts w1th the cl.ehvered ar.tlfa.cts. Any ther doubt W Actv-5 9357143 22051389
they had should be registered in the qualitative evaluation form. w Actv-6 5.214286 12513729

Another difference between the experiment and the pilot was
the activities categorization. We categorize the activities in “de-
velopment” and “maintenance”. We decided to make this differ-
entiation to investigate not only the productivity in writing new
KDM instances but also the productivity in maintaining the exist-
ing ones.

4.2.2. Execution of the experiment

Firstly, the subjects were positioned in the groups based on its
punctuation of the Subjects Characterization Form. Each group had
seven subjects. In Table 6 the subjects punctuation are represented
considering the form questions and the subjects total to each punc-
tuation category. Both groups had the same subjects quantity in
the same category, i.e., each group had one subject with very low
punctuation (0 to 10), one subject with low punctuation (11 to 20),
three subjects with average punctuation (21 to 30), one subject
with high punctuation (31 to 40) and one subject with very high
punctuation (41 to 50). After the subjects were allocated, they re-
ceived all the artifacts needed to perform the activities.

Regarding the data of the experiment, for some activities our
interest was the time spent for conducting it. In this case, the time
was registered in minutes. In other cases, our interest was in the
number of errors and, in this case, it was analyzed typos, miss-
ing punctuation and omitted reserved words. Thus each correction
performed in a code line in order to make it works properly was
counted as one error. For instance, if a statement contains one typo
and two missing reserved words the errors amount is 3 (three). For
information purposes, all tables were obtained by using the R sta-
tistical software.

4.3. Data validation of development activities

4.3.1. On time variable

In this section we analyze the data of the 14 subjects who per-
formed the six development activities and the effect of these two
factors (extensions and activities) on the time variable. The type
of analysis that was conducted is called as two-within subjects
factors (two-way repeated measures ANOVA), because each group
performs all the development activities of the two extensions.

In Table 7, we present the means (Time.mean) and standard de-
viations (Time.sd) of the time variable related with development
activities and in Fig. 7 the corresponding box-plot. We can see
that box-plots of the HW extension are more or less homogeneous
in comparison with the box-plots of LW extension. Box-plots of
LW.Actv-4 and LW.Actv-5 look like they have the largest amount
of spread data for LW extension, indeed Table 7 corroborate that
impression because the standard deviation values of each one are
2.92 and 2.20 respectively. Thus, this is an indicator that these ac-
tivities requires more attention to be analyzed.

In order to use multifactorial ANOVA for analyzing the data, a
precondition imposed is the assumption of normality. Therefore,
our first analysis was checking whether there is no violation of
normality by using Shapiro-Wilk test. The test showed that the
data are not normal. The complete analysis can be found in the
following URL (https://github.com/Advanse-Lab/KDM-AQO). In order
to overcome this problem we apply a non-parametric test for mul-
tiple factor with repeated measures: the Aligned Rank Transform
Procedure (ART) (Wobbrock et al., 2011).

296

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

20
|

15

[} b o
£ _
i i
e 4 °
5 — = , 8 o
" ° :| —— — —
7 S — - .
- _o : = = =
T T T T T T T T T T T T
HW.Actv-1 LW.Actv-1 HWActv-2 LW.Actv-2 HW.Actv-3 LW.Actv-3 HW.Actv-4 LW.Actv-4 HW.Actv-5 LW.Actv-5 HW.Actv-6 LW.Actv-6
Technique.Activity
Fig. 7. Average time of development activities on time variable.
Table 8
ART test of development activities on time variable.
F Df Dfres Pr(>F) Signif. codes
1 Technique 243.092 1 143 < 2.22e-16 ***
2 Activity 129659 5 143 < 2.22e-16 ***
3 Technique:Activity = 48.669 5 143 < 2.22e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Model: Mixed Effects (Imer), Response:
art(Time). F: Statistic. Df: Degree of Freedom. Df.res: Residual degrees of freedom. Pr(>
F): Significance probability.
o | Technique
b LW
------ AW
o 0 |
E T
i=
3 o
[- 7
3
£
w -
o

Actv-1 Actv-2 Actv-3

Actv-4

Actv-5 Actv-6

Activity

Fig. 8. Interaction plot of development activities on time.

In Table 8, we show the results of the application of the ART
test on the development activities, where the p-values for each fac-
tor and the interaction between them are statistically significant,
meaning there is a main effect of extensions on time, a main ef-
fect of activities on time and a significant interaction between ex-
tensions and activities. A “main effect” is the effect of a single in-
dependent variable on a dependent variable, in this case, the effect
of extension and activity on time variable.

We can also see graphically the interaction between the two
factors by means of an interaction plot. In Fig. 8 we show the inter-
action plot of development activities between the two extensions
(LW and HW) on time. The line that represents the LW extension
always holds a gap in relation with the line that represents the
HW extension. That means there is a main effect of extension on
time because LW always take more time than HW for developing
the activities.

From Actv-1 to Actv-2 the lines are sloped and almost parallel
so there is a main effect on activity because both require slightly
more time. From Actv-2 to Actv-3 there is a behaviour called “al-
ligator jaws”, in Actv-2, both of the extensions are basically the
same, very close in performance but in Actv-3, the LW extension
technique has now become deferentially worst than HW extension
technique in terms of developing time. The same can be said from

Actv-3 to Actv-4 and Actv-4 to Actv-5. Finally, from Actv-5 to Actv-
6 both techniques decrease the development time but the gap be-
tween the lines is bigger than the gap between Actv-1 and Actv-2.

In Table 9 we show the pairwise comparison among the activi-
ties of development by taking into account the time variable. This
can be interpreted by posing the following questions: Is the dif-
ference between HW and LW significantly different in condition
Actv-1 to condition Actv-2?. No, because its p-value >.05. Is the
difference between HW and LW significantly different in condition
Actv-2 to condition Actv-3?. Yes, because its p-value <.05. Is the
difference between HW and LW significantly different in condition
Actv-3 to condition Actv-4?. Yes, because its p-value <.05. Is the
difference between HW and LW significantly different in condition
Actv-4 to condition Actv-5?. Yes, because its p-value <.05. Is the
difference between HW and LW significantly different in condition
Actv-5 to condition Actv-6?. Yes, because its p-value <.05.

4.3.2. On error variable

In this section we analyze the data of the fourteen subjects
which performed six development activities by using the two ex-
tension techniques in KDM models, LW and HW and the effect of
these two variables (technique and activity) on the error variable.

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

Table 9

297

Interaction contrast of development activities on time variable.

Value Df Chisq Pr(>F) Signif. codes
1 HW-LW : Actv -1-Actv -2 —3.857 1 0.0573 0.810797
2 HW-LW : Actv -2-Actv -3 57.857 1 12.8951 0.001977 o
3 HW-LW : Actv -3-Actv -4 146.214 1 82.3553 < 2.2e-16 ***
4 HW-LW : Actv -4-Actv -5 -82429 1 26.1738 2.496e-06 o
5 HW-LW : Actv -5-Actv -6 ~ —90.643 1 1.6504 1.661e-07 o

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1. Chisq Test (x?2), p-value adjustment method:
holm. Df: Degree of Freedom. Df.res: Residual degrees of freedom. Pr(> F): Significance proba-

bility.

Table 10
Means and standard deviation for error variable of de-
velopment activities.

Technique Activity Error.mean Error.sd
HW Actv-1 0.0000000 0.0000000
HW Actv-2 0.2142857 0.8017837
HW Actv-3 0.1428571 0.5345225
HW Actv-4 0.2142857 0.8017837
HW Actv-5 0.0000000 0.0000000
HW Actv-6 0.5000000 1.6052798
LW Actv-1 0.0000000 0.0000000
W Actv-2 0.0000000 0.0000000
W Actv-3 0.0000000 0.0000000
w Actv-4 0.8571429 1.8337495
W Actv-5 0.3571429 0.9287827
W Actv-6 0.4285714 1.6035675
Table 11
ART test of development activities on error variable.
F Df Dfres Pr(>F) Signif. codes
1 Technique 10.7276 1 143 0.0013243 =+
2 Activity 1.8368 5 143 0.1093124
3 Technique:Activity 3.2235 5 143 0.0086730 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1. Model: Mixed Effects (Imer), Re-
sponse: art(Error). F: Statistic. Df: Degree of Freedom. Dfires: Residual degrees of
freedom. Pr(> F): Significance probability.

The type of analysis that was conducted in this section is the same
as the one we made in the previous section.

In Table 10, we present the statistics of means and standard de-
viations of error variable related with development activities for
HW and LW techniques. We do not provide the corresponding box-
plot because there are several zero values in the standard deviation
column that does not bring valuable information to our analysis.
Instead of that, an interaction plot could be more useful to analyze
main effects and interactions among levels of factors.

As in the previous analysis, herein we also check whether there
is not a violation of normality by using Shapiro-Wilk test. The test
showed that the data are not normal and the complete analysis
can be found in the following URL (https://github.com/Advanse-
Lab/KDM-AO). Thus, we apply the non-parametric test for multiple
factor with repeated measures ART.

In Table 11, we show the results of the ART test of develop-
ment activities on error, where the p-values are just significant for
technique and the interaction between technique and activity. That
means that there is an overall main effect of the technique on er-
ror and a significant interaction between technique and activity.

In Fig. 9 we show the interaction plot of development activities
between the two techniques on error. As we see, the lines of the
two techniques are crossing and that is a classic picture of inter-
action effect. Also, if we draw a line between the two techniques
the proportion areas seems to be similar which indicates, in over-

all, there is not much changes in activity, as the ART test indicated
previously (p-value >.05).

Table 12 shows the interaction contrast of development activi-
ties on error variable. Line 6 presents the only significant p-value,
that means there is significant differences on error by using HW
and LW extension techniques when developers perform Actv-3 or
perform Actv-4.

Some conclusions can be made from the statistical analysis. The
first one is that developers tend to make more errors when they
are using the LW technique than HW technique. The second one is
that the activity does not affect significatively the quantity of er-
rors. The third one is that techniques in combination with Act-3
and Act-4 have an effect on errors. One explanation could be that
the time for developing these activities is higher than the others
because of the difficulties involved, and so more errors may be in-
troduced in the development.

4.4. Data validation of maintenance activities

4.4.1. On time variable

In this section we analyze the data of the fourteen subjects
which performed two development activities by using the two ex-
tension techniques in KDM models, LW and HW and the effect of
these two variables (technique and activity) on the time variable.
The type of analysis that was conducted is called as two within
subjects factors (2 repeated measures factors), because each group
of the seven subjects perform all the maintenance activities of the
two techniques.

In Table 13, we present the statistics of means and standard
deviations of time variable related with maintenance activities for
HW and LW techniques and in Fig. 10 the corresponding box-plot
of the data.

It seems that there is no big differences in time when apply-
ing the HW technique to both activities. Similarly, there is no big
differences in time when applying the HW technique to both ac-
tivities. Nevertheless, HW technique performs better (in less time)
than LW technique.

As in the previous analysis, herein we also check whether there
is not a violation of normality by using Shapiro-Wilk test. The test
showed that the data are normally distributed. Thus, we analyze it
by using a parametric test called Linear Mixed Model (Imm) which
belongs to the Ime4 package (Bates et al., 2015) of the R statistical
software. The complete analysis can be found in the following URL
(https://github.com/Advanse-Lab/KDM-AO).

Table 14 shows Imm test of maintenance activities on time vari-
able. There are main effects on Technique and on Activity but there
is not an interaction of these factors. Indeed, Fig. 11 shows the in-
teraction plot of maintenance activities where the lines of each
technique are slightly parallel without crossing between them,
consequently with the result of Imm test analysis.

In light of the overall significant result, we can do some pair-
wise comparisons among the levels of technique and activity. In
Table 15, we show the result of these comparisons and it presents

298

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

mean of Error

Technique

HW
— W

Actv-1 Actv-3

Actv-4 Actv-6

Activity

Fig. 9. Interaction plot of development activities on error.

Table 12

Interaction contrast of development activities on error variable.

Value

Df Chisq Pr(>F) Signif. codes

HW-LW : Actv-1-Actv-2
HW-LW : Actv-2-Actv-3
HW-LW : Actv-3-Actv-4
HW-LW : Actv-4-Actv-5
HW-LW : Actv-5-Actv-6

—18.357
3.143
41.571
-11.214
—20.071

v W N =

1.7922
0.0525
9.1913
0.6689
21426

1.00000
1.00000
0.03404
1.00000
1.00000

_ e

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1. Chisq Test (x?2), p-value adjustment method:
holm. Df: Degree of Freedom. Dfres: Residual degrees of freedom. Pr(> F): Significance

probability.

10

Time

LW.Actv-7

LW.Actv-8

Technique.Activity

Fig. 10. Average time of maintenance activities on time variable.

Table 13
Means and standard deviation for time variable of
maintenance activities.

Technique Activity =~ Time.mean Time.sd

HW Actv-7 2.214286 0.6992932
HW Actv-8 3.428571 1.3424596
LW Actv-7 5.500000 1.6984156
LW Actv-8 7142857 2.0701967

all the pairwise comparisons available across of the levels in the
interaction plot. Note that all p-values are significant, so there are

differences on time when using different techniques for different
maintenance activities.

4.4.2. On error variable

In this section we analyze the data of the fourteen subjects
which performed two development activities by using the two ex-
tension techniques in KDM models, IW and HW and the effect of
these two variables (technique and activity) on the error variable.

In Table 16, we present the statistics of means and standard de-
viations of error variable related with development activities for
HW and LW techniques. We do not provide the corresponding box-
plot because of the values of the data it does not bring valuable in-
formation to our analysis. Instead of that, an interaction plot could

Table 14
Main LMM test of maintenance activities on time variable.
F Df Dfres Pr(>F) Signif. codes
1 (Intercept) 246.5185 1 13 7.849e-10 o
2 Technique 109.1364 1 39 7.313e-13 ok
3 Activity 18.1818 1 39 0.0001234
4 Technique:Activity — 0.4091 1 39 0.5261708

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1. Model: Mixed Effects (Imer), Response:
art(Error). F: Statistic. Df: Degree of Freedom. Dfres: Residual degrees of freedom.

Pr(> F): Significance probability.

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1. p-value adjustment method: holm. Fit:
Ime4::lmer(formula = Time ~ (Technique * Activity) + (1 | Subject)). Pr(> [t|): Significance prob-

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304 299
2 n Technique
= N — W
E ---- HW
o —
P SR
H !
E .
Actv-7 Activity Actv-8
Fig. 11. Interaction plot of maintenance activities on time.
Table 15
Post hoc pairwise comparisons of maintenance activities on time variable.
Simultaneous tests for general linear hypotheses
Est.Std. Error tvalue Pr(> |t]) Signif. codes
HW,Actv-7 - LW,Actv-7 == —3.2857 04738 - 6.935 1.05e-07 o
HW,Actv-7 - HW,Actv-8 == 0 —1.2143 04738 - 2.563 0.014355 *
HW,Actv-7 - LW,Actv-8 == —49286 04738 -10402 4.97e-12 ***
LW,Actv-7 - HW,Actv-8 == 2.0714 04738 4372 0.000266 ***
LW,Actv-7 - LW,Actv-8 == -1.6429 04738 - 3467 0.002591 **
HW,Actv-8 - LW,Actv-8 == 0 —3.7143 04738 - 7.839 7.77e—09 ***

ability.
s 7 Technique
w v — W
5 o 7 ---- HW
c o
2 .
E ol seseeesosusuuess - P e

Actv-7 Actv-8

Activity

Fig. 12. Interaction plot of maintenance activities on error.

be more useful to analyze main effects and interactions among lev-
els of factors.

As in the previous analysis, herein we also check whether there
is not a violation of normality by using Shapiro-Wilk test. The test
showed that the data are not normal and the complete analysis
can be found in the following URL (https://github.com/Advanse-
Lab/KDM-AO). Thus, we apply the non-parametric test for multiple
factor with repeated measures ART.

In Table 17, we show the results of the ART test of maintenance
activities on error, where there are not overall significant main ef-
fects on technique, activity and also there is not an interaction be-
tween the two factors because p-values are >.05 in all cases. In
Fig. 12 we show the interaction plot of maintenance activities be-
tween the two techniques on error. Lines are slightly separated in
activity Actv-7 and tend to join in activity Actv-8. Indeed, for ac-
tivity Actv-7 there were no errors when developers used HW tech-
nique and means of error for activity Actv-8 when developers used
LW technique is very low. Thus, the gap between the two lines is
negligible and therefore, we state that there is not a main effect
on technique.

In Table 18, we show the interaction contrast of maintenance
activities on error variable. There is not significant differences on
error by using HW and LW extension techniques when developers
perform Actv-7 or perform Actv-8.

4.5. Discussion of results

After analyzed statistically the results, we can make some con-
clusions about the extension techniques for the KDM. The analysis
performed in Section 4.3 shows that in the overall, the LW tech-
nique performed worse than HW technique, for all development
activities. However, it was notorious the poor performance of de-
velopers in activities 3, 4 and 5 with the LW technique. It seems
that activities that requires the extension of several AOP structures

with the LW technique, such as the combination of PointCuts and
JoinPoints, take more time to implement because developers need
to write more lines of code in comparison with the HW extension
technique.

The analysis in Section 4.3.1 shows that in the overall, the usage
of LW or HW extension technique for developing activities imply in
the rise of errors. This is in compliance with the previous analysis
because as developers write more lines of code is reasonable that
they make more mistakes in the codification.

The analysis in Section 4.4 shows that in the overall, the LW
technique performed worse than HW technique, for the two main-
tenance activities. However, both of the techniques increase the
maintenance time in the activity Actv-8. The activity Actv-8 deals
with PointCut and JoinPoints that is the same as in the previous
scenario, taking more time to be implemented by developers.

Finally, the analysis in Section 4.4.2 shows that in general the
techniques and the activities does not affect significantly the num-
ber of errors because few errors were committed by developers.

5. Threats to validity

As with any experimental study, this experiment has sev-
eral threats to validity. In this section, we consider the study of
(Cook and Campbell, 1979) as a template to discuss the threats
that might jeopardize the validity of our experiment. Internal va-
lidity is concerned with the confidence that can be placed in the
cause-effect relationship between the treatments and the depen-
dent variables in the experiment. External validity has to do with
generalization, namely, whether or not the cause-effect relation-
ship between the treatments and the dependent variables can be
generalized outside the scope of the experiment. Conclusion valid-
ity focuses on the conclusions that can be drawn from the relation-
ship between treatment and outcome. Finally, construct validity is
about the adequacy of the treatments in reflecting the cause and

300 B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304

Table 16
Means and standard deviation for error variable of
maintenance activities.

Technique Activity Error.mean Error.sd
HW Actv-7 0.0000000 0.0000000
HW Actv-8 0.3571429 0.8418974
Lw Actv-7 0.7857143 1.0509023
W Actv-8 0.5714286 1.3985864
Table 17
ART test of maintenance activities on error variable.
F Df Dfres Pr(>F) Signif. codes
1 Technique 2.1128 1 39 0.15407
2 Activity 1.5888 1 39 0.21499
3 Technique:Activity 15733 1 39 0.21720

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1. Model: Mixed Effects (Imer), Re-
sponse: art(Error). F: Statistic. Df: Degree of Freedom. Df.res: Residual degrees of
freedom. Pr(> F): Significance probability.

the suitability of the outcomes in representing the effect. We cat-
egorized all threats to validity according to this classification.

5.1. Internal validity

We mitigated the experience level of participants by splitting
all the participants in two balanced groups. To the creation of
these two groups we have considered the experience level based
on Table 6 and we have balanced the groups considering the total
points of each subject.

The training phase was focused on presenting the AOP con-
cepts, the metamodel extensions mechanisms and how to create
KDM-AO instances (LW and HW). Thus, no training on Model-
Driven Architecture (MDA) or ADM were done. However, the sub-
jects (masters and PhDs candidates) already had a preparation by
the professor of the course, so we did not have to be concerned
about it. Another point is that as they were instantiating the meta-
model extensions programmatically, the model-based part was ab-
stracted.

Another internal validity is the productivity under evaluation.
There is a possibility that this might influence the experiment re-
sults because students often tend to think they are being evalu-
ated by experiment results. In order to mitigate this, we explained
to the students that no one was being evaluated and their partic-
ipation was considered anonymous. However, we cannot rule out
the possibility that some participants has been influenced by this
threat.

5.2. External validity

The sample might not be representative of the target popula-
tion. As mentioned, we carried out the experiment with 14 sub-
jects, which were divided into two group. We cannot rule out the
threat that the results could have been different if another sample
had been selected. However, to diminish this threat we have per-
formed the training stage in order to provide to the subjects the
knowledge in extension mechanisms needed the make the sample
the most representative.

It is possible that the exercises are not accurate for every main-
tenance’s problem for real world applications. To mitigate this
threat, the activities were designed considering applications based
on the real world.

Another point is that the activities were application-
independent as can be seen in Table 4. For example, creating
three pointcuts is not different if the pointcuts is from application
Y or X, because just the name of them is different. The main point

Table 18
Interaction contrast of maintenance activities on error variable.
Value Df Chisq Pr(> Chisq)
1 HW-LW : Actv -7-Actv-8 -8 1 15733 02097

Chisq Test (x?2), p-value adjustment method: holm. Df: Degree of Freedom.
Pr(> Chisq): Significance probability.

is that creating elements in the LW extension demands more lines
of code and, consequently, more effort and error proneness.

5.3. Conclusion validity

The main threat to conclusion validity has to do with the qual-
ity of the data collected during the course of the experiment. We
have evaluated the performance of the subjects considering the
time to perform the activities and the number of errors in each
task. About the time, we have asked to the subjects to set the start
and the end time. In this sense we could have had a problem be-
cause a subject could forget to mark the time in the form. To mit-
igate this, we have set a standard start time to all subjects and to
certificate that they were recording the time in each activity we
had three monitors in the room just to check this.

About the numbers of errors, each subject had to hand two set
of files, one to each treatment, the challenge was to catch all the
errors without miss a single one. To mitigate this, we have per-
formed the error checking by two experts from our group, if the
number of errors of a subject was the same we considered right,
if not we would have to check again until the number of errors be
the same.

5.4. Construct validity

The subjects already knew the researchers and they also knew
that the HW instantiation process was supposed to be easier (less
source code to be written) if compared to the LW one. Both of
these issues could affect the collected data and cause the exper-
iment to be less impartial. In order to avoid impartiality, we en-
forced that the participants had to keep a steady pace during the
whole study and that both approaches had their advantages and
disadvantages.

Since we have created both KDM-AO extensions we claim that
we had no preference neither for the LW one nor for the HW one.
Thus we have eliciting the main advantages and disadvantages of
both in this paper.

6. Related works

This section presents the related works of our approch. We split
this section in three topics: (i) specific approaches to KDM exten-
sions, (ii) generic approaches such as UML'’s extensions and (ii) ap-
proaches that use aspect-oriented in legacy systems.

6.1. Specific approaches - KDM extensions

The work more related to ours is the KDM AO extension created
by Shahshahani (2011). As we have done here, this author also cre-
ated a heavyweight KDM extension for aspect-oriented program-
ming. There are three main differences between our works. Firstly,
while Mirshams has based her extension on an aspect model cre-
ated by herself, we have created our extension based on a very
well known profile for aspect-oriented programming. Evermann’s
profile encompasses all the AO concepts presented in Aspect] and
in other aspect-oriented languages, like Aspect C++ and AspectS.

The second difference is the scope of our extensions. The as-
pect model used by Mirshams contains much less elements than

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304 301

Evermann’s profile. That means our extension is able to represent
both a high level (using the most generic metaclasses) and a low
level (using most specific metaclasses) view of the system. In her
case, just a higher level view is possible. The third difference is
that her work is limited to dynamic crosscutting as there are no
elements for representing inter-type declarations. However, despite
all of these differences, the main similarity is that we have used
the same KDM metaclasses she has used too.

Another KDM extension is presented by Baresi and Mi-
raz (2011). They proposed a heavyweight KDM extension to sup-
port Component-Oriented MOdernization (COMO). COMO is a
metamodel that supports traditional concepts of software architec-
ture, allowing to attach software components in KDM. Using their
extension it is possible to replace or add parts of a system. Un-
like we have done here, in their paper they had not used an exist-
ing profile as the starting point for creating their extension - they
combined another metamodel to the KDM. COMO extends some
high level metaclasses of KDM, such as KDMModel, KDMEntity
and KDMRelationship. These classes are the base of their ex-
tension and provide the link between KDM and COMO metamod-
els.

The main similarity with our work is that they have also per-
formed a heavyweight extension in KDM. As a main difference, the
extension presented by them only extended high level elements of
KDM, while in our solution we have use more specific elements
such as ClassUnit and MemberUnit.

Usually event logs are represented with particular notations
such as Mining XML (MXML) rather than the recent software mod-
ernization standard, such as KDM. Therefore, (Pérez-Castillo et al.,
2012) created an extension aiming to mitigate this limitation, i.e.,
the authors have extended KDM'’s Event model to describe event
logs. Similarly to our lightweight KDM extension they also have
used the ExtensionFamily mechanism - allowing them to cre-
ate Stereotypes comprising different TagDefinitions and
also permitting them to integrate event logs in KDM, tagging the
extracted entities with the extended concepts.

6.2. Generic approaches - UML extensions

Similar to our work and the work proposed by
Shahshahani (2011) there are researches that seek to perform
AOP extensions in UML (Ahmed et al., 2017; Zakaria et al., 2002;
Qaisar et al., 2013; Stein et al., 2002).

Ahmed et al. (2017) focuses on creating a lightweight UML ex-
tension which supports language specification for Aspect]. Similar
to our extension they also have used Eclipse IDE - more specifi-
cally they used Eclipse Modeling Framework (EMF), which is the
core to represent KDM’s metamodels in Eclipse.

Zakaria et al. (2002) proposed an UML extension for modeling
AO system. The authors used the lightweight mechanism to cre-
ate the AO UML extension. Lightweight UML extension mechanism
are based on “Stereotypes”, “Tagged Values”, and “Constraints”. As
presented in Listing 1 our lightweight AO extension mechanism
also contains “Stereotypes” and “Tagged Values” (known in KDM’s
metamodel as “TagDefinition”), see lines 2 and 6, respectively. Za-
karia et al., proposed different types of tags for relationship be-
tween the classes and aspects, differently in our approach one just
need to call the method createTagDefinition() and add this
tag into a “Stereotypes”, see Line 6 and Line 7 in Listing 1.

Qaisar et al. (2013) describe a metamodel for AOP in which they
proposed an extension for AOP. The authors used Meta Object Fa-
cility (MOF) which has the heavyweight extensibility mechanism
in its specification. Likewise the KDM, the authors tried to cre-
ate a complete metamodel, i.e., according to the authors, the pro-
posed metamodel not only models the static structure of AOP but
also can models the behavioral structure of the model. The authors

also defined new metaclasses, for example, they define the follow-
ing metaclasses: Aspect, PointCut, and Advice - these meta-
classes are strongly similar to our heavyweight extension mecha-
nism: AspectUni, PointCutUnit, and AdviceUnit.

Stein et al. (2002) also create AO extension to design notation
for Aspect] programs. Similar to our approach the authors classi-
fied similarities between UML elements and Aspect]'s features. The
extension proposed is used in three UML'’s diagrams, class diagram,
use case diagram, and sequence diagram.

6.3. Aspect-oriented approaches in legacy systems

The approaches of Schutter and Adams (2007) and Chen et al.
(2010) are focused on reengineering legacy systems with the
help of aspect-orientation. The approache of Schutter and
Adams (2007) developed a method to generate class and sequence
diagrams using techniques of reflection and decompilation from
the Java binary byte code of AO legacy systems. The authors based
their approach on the Java Reflection and decompiler tools.

The approach proposed by Chen et al. (2010) address the com-
bination of AO programming and meta-programming during the
revitalization of legacy systems in Cobol and C. To address these
combinations, the authors used four use cases that are: (1) re-
verse engineering; (2) recovery of business logic; (3) encapsulation
of business applications for integration with service-oriented en-
vironments; and (4) maintenance and bug-fix of legacy systems.
The authors achieved relevant results for the first three use cases
where AO programming and meta-programming showed that can
aided for the address problems, but for the last use case the AO
programming solution present too much of a limitation for Cobol
legacy systems although the problem can be managed reasonably
for C legacy systems.

Although these publications are model-driven approaches and
their goals are in showing the reengineering/modernization pro-
cess of legacy systems our work is more focused on showing
how the modernization process could benefit from KDM aspect-
oriented extension.

7. Lessons learned and limitations

This section discusses the lessons learned of our investigation
and shows some limitations of modernization processes based on
ADM.

The first lesson learned is that there is a lack of ready-to-use
modernization tools that could help in the validation process of
a modernization scenario. In conducting this research, we learned
that the power of ADM is strongly influenced by the ability to rep-
resent specific concepts in an appropriate way. For instance, a ma-
jor concern in reverse and forward engineering steps derives from
the heterogeneity of how to represent software systems, in which
the data are often uniformly represented as many models. There-
fore, ADM by means of its standards aims at switching from the
heterogeneous scenario to the homogeneous scenario. The big idea
is to retrieve one or several models from a given system, depend-
ing on the needed viewpoints, and then to work directly on these
models.

Nowadays there are very few tools that give full support to re-
verse and forward engineering based on ADM scenario. As far as
we know, there are few initiatives to provide more generic inte-
grated reverse engineering tools that can be extended and used to
different scenarios. A tool that we have used herein is MoDisco.
Although MoDisco is used in this project, its core components sup-
port discovery just for Java technologies, i.e., there is a lack of tools
that provides fully support for other implementation technologies
such as C/C++, C# (.NET) or COBOL. In fact, Clause (Clausen, 2012)

302 B.M. Santos, A.d.S. Landi and D.S. Santibdiiez et al./The Journal of Systems and Software 149 (2019) 285-304

devised a Python discovery based on ADM. However, we could not
find online the source-code to test this discovery.

Thus, after developing our AO-extensions and performing the
validations that we have shown in this paper, the ideal scenario
would be to perform a real modernization project using the exten-
sions but this was not possible because we neither had an aspect-
oriented discoverer nor a forward engineering tool to convert KDM
models in source-code again.

The second lesson learned is the importance of a research that
presents how to extend KDM in a light and heavyweight manner.
As we present in the related works section, there is a shortage of
guidelines on how to extend KDM as well as lack of criteria on
how to compare the instantiation process of HW and LW exten-
sions.

ADM claims KDM can represent all software artifacts, however,
sometimes it is needed to represent specific domain concepts and
that is why there are the extension mechanisms. With the conduc-
tion of our research, we could notice that the choice for an exten-
sion (HW or LW) will depend on the purpose that it will be used
for and for each one there is a set of consequences to be consid-
ered. For instance, the LW extension mechanism is less demanding,
since its creation process requires less effort and its reuse is more
easily adapted in existing tools. In general terms, the main advan-
tage of using the HW extension is due to the quality assurance of
the produced instances. Another advantage of using the LW exten-
sion mechanism is the speed and convenience of adding new be-
haviors in instances of KDM, since its creation process is less labor
intensive if compared to the HW mechanism.

As a third lesson learned we claim that there is a lack of re-
search about the synergy between KDM and others ADM standard
metamodels. It is noted that KDM is a powerful metamodel that
can be adapted to several domains, so it will only depend on the
software engineer to create a solution that best serves its purpose.
However, KDM is a metamodel to represent software systems ar-
tifacts and it does not provide a graphical visualization of its con-
tent. For this purpose, a modernization engineer should use an-
other metamodel such as UML or Business Process Model and No-
tation (BPMN), depending on the required point of view.

In other research of our group (Durelli et al., 2017), we eval-
uated the application of refactorings in KDM instances with the
support of UML classes diagrams in an experiment involving seven
systems implemented in Java, by using a tool named Knowledge
Discovery Model-Refactoring Environment (KDM-RE). The systems
used in the experiment were Xerces-], Jexel, JFreeChart, JUnit,
GanttProject, Artoflllusion, and JHotDraw. According to the authors,
these seven systems were chosen because they are real-world Java
applications whose sizes range from 16,026 to 240,540 lines of
code. In spite of the fact that, KDM seems to be a robust meta-
model to represent complete systems it is not possible to state that
the results can be generalized for all Java applications instantiated
using KDM and represented in UML classes diagrams.

As a forth lesson learned we claim that dealing with the num-
ber of errors has brought us a better understanding and knowl-
edge on how to create automated support for the creation of KDM-
AO instances. We claim that this knowledge have came from two
sources: the definition of what would be considered as an error
and the importance of counting the number of errors.

Regarding the first part of the sentence, we have defined what
would be an “error” so that we could count the number of errors
the subjects committed. We believe it is not so important the gran-
ularity of the error, but how we are counting them.

Regarding the second part, that is the importance of counting
the number of errors, we believe there are two important points:
i) Clearly, the most expected situation would be to have an auto-
mated tool for creating the instances of the KDM extensions. How-
ever, the Modernization Engineer, in charge of implementing such

an automated support, must create “scripts” that automate the cre-
ation of instances. The subjects of the experiment played the role
of these scripts and this was very useful for identifying the most
frequent errors in the process of creating AO KDM instances. The
second point is that, doing such an exercise of creating the in-
stances manually, we learned all the steps for the correct imple-
mentation of the scripts.

8. Conclusion

In this paper we presented our investigation on aspect-oriented
extensions for the Knowledge-Discovery Metamodel (Santos et al.,
2014b). To conduct this investigation we have developed a heavy-
weight and a lightweight extension and conducted an experiment
that evaluated the productivity when creating instances of these
extensions and also when modifying these instances. The main
goal is to deliver the KDM AO extensions created so that Aspect-
Oriented Modernization Projects can be conducted.

The experiment has concentrated on analyzing the productivity
when creating instances (and also modifying them) of these both
KDM AO extensions. The tasks were performed programmatically
for the software engineers and an AO Persistence Framework was
employed (de Camargo and Masiero, 2008). The statistical analy-
sis showed that the HW and LW do have impact over the time
and also the number of errors when creating the instances. So the
choice between these options must be carefully analyzed. Summa-
rizing, when HW extension is employed, the software engineers
are 43% faster than using LW extensions. Besides, the software en-
gineers commit 7.7% less errors if compared to the subjects that
have used the LW extension.

Regarding the effort for creating the extensions, we claim that it
is quite similar. The creation of a LW extension requires the instan-
tiation of some classes of the kdm package for creating stereotypes
and tagged values, but none new metaclass is created. Similarly, in
the HW case, one must create new metaclasses that must be in-
cluded as part of the KDM. The advantages and disadvantages of
HW and LW extensions were already stated many times in litera-
ture, but basically, the main are that LW extensions are more easily
to be incorporated and used in tools, but they provide less precise
semantics. On the other hand, HW extensions are more difficult to
be incorporated in tools, but they are much more precise in se-
mantics.

Although this paper has concentrated on aspect-oriented exten-
sions, the process we have used for creating the extensions can
be generalized, as well as most findings. For example, one of the
generalizable findings is the perception that the creation of KDM
extensions for a specific domain can be based on existing UML
profiles, as we did with Everman’s profile. As the Code Package of
KDM has many similarities with UML, it is quite simple to find out
which KDM metaclass can be used as base metaclass in a new ex-
tension. To assist software engineers in this task with developed a
mapping table (UML - KDM) shown in Table 3.

The choice of which KDM extension to use (HW or LW) is
guided by several points. Usually, it depends on the goal of the
projects. For instance, if the HW mechanism is chosen, the new
metaclasses could be instantiated more easily and this provides a
better correcteness in instance level, but it makes difficult the in-
teroperability with other tools that uses KDM. On the other hand,
the LW extensions is more interoperable but harder to be instan-
tiated and the correctness of the models should be granted by the
supported tools that implement it.

As a main limitation we claim that the ADM approach do not
have a wide set of tools that works with KDM to facilitate the re-
verse and forward engineering available in the literature. Thus, we
are depending on specific tools and programming languages, such
as MoDisco tool and JAVA programming language. However, we be-

B.M. Santos, A.d.S. Landi and D.S. Santibdfiez et al./The Journal of Systems and Software 149 (2019) 285-304 303

lieve that the guidelines provided in this paper could be used in
another programming language because we explain how to use the
KDM to perform the extensions.

The usage scenario of KDM extensions as well as the right mo-
ment to use them are still not so clear. Along aspect-oriented mod-
ernization projects, instances of the extended KDM will be cre-
ated as a result of refactorings/optimizations/reestructuring tasks
applied over the legacy KDM (the KDM that represents the legacy
system). This happens in the upper right part of the horse shoe
model. We believe that, in many situations, the instances of the
new concepts (metaclasses or stereotypes) of the extended KDM
will be automatically created by the transformation rules. For ex-
ample, a transformation rule could get as input a legacy KDM with
some packages annotated with crosscutting concerns and generate
aspects for each annotated package. However, there are many other
situations where the software engineers will have to create the
transformations manually for instantiating the new aspect-oriented
concepts. In these cases, it is important to know the differences
between HW and LW extensions and the advantages and disad-
vantages of them.

We are currently studying how KDM and KDM extensions can
be arranged into the architecture of modernization tools. In this
sense, we are developing a Reference Architecture for supporting
the design of this kind of tools (Santos and de Camargo, 2016). As
part of this effort, we are also working on creating a terminology
that better characterize these tools.

The experimental analysis presented in this paper has consid-
ered the development and maintenance on KDM instances. These
activities were performed in Eclipse IDE without the help of a tool
to simplify the codification process. Thus, as a future work we en-
vision the opportunity of developing a modernization tool that al-
lows the automatic instantiation of KDM-AO elements (HW and
LW) to easier the creation of aspect-oriented refactorings using
KDM. With this modernization tool would be possible to reapply
the experiment with a bigger set of subjects in order to evaluate
other quality attributes such as usability and quality of KDM-AO
instances in real company projects. Thus, with this experiment we
could be able to find out if the modernization process proposed by
ADM is suitable in the context of companies.

As another future work, we intend to conduct other case stud-
ies using other aspect-oriented languages such as AspectC++ and
AspectS in order to evaluate if our KDM-AO extensions are generic
and platform independent enough to represent them.

Acknowledgements

This study was financed in part by the Coordenacido de Aper-
feicoamento de Pessoal de Nivel Superior - Brasil (CAPES) Finance
Code 001 (grant number 88881.131912/2016/0).

Daniel San Martin would like to thank CONICYT (Chile) (grant
number 72170024). André Landi would like to thank S2IT SOLU-
TIONS CONSULTORIA LTDA. Valter Camargo would like to thank
FAPESP (process number 2016/03104-0).

References

Ahmed, R.A.M., Aboutabl, A.E., Mostafa, M.-S.M., 2017. Extending unified modeling
language to support aspect-oriented software development. Int. J. Adv. Comput.
Sci. Appl. 8 (1), 208-215.

Baresi, L., Miraz, M., 2011. A component-oriented metamodel for the modernization
of software applications. In: 2011 16th IEEE International Conference on Engi-
neering of Complex Computer Systems, pp. 179-187. doi:10.1109/ICECCS.2011.25.

Bates, D., Mdchler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects mod-
els using Ime4.]. Stat. Softw. 67 (1), 1-48. doi:10.18637/jss.v067.i01.

Bianchi, A., Caivano, D., Marengo, V., Visaggio, G., 2003. Iterative reengineering of
legacy systems. IEEE Trans. Softw. Eng. 29 (3), 225-241. doi:10.1109/TSE.2003.
1183932.

Bruneliere, H., Cabot,]., Jouault, F,, Madiot, F., 2010. Modisco: a generic and exten-
sible framework for model driven reverse engineering. In: Proceedings of the

IEEE/ACM International Conference on Automated Software Engineering. ACM,
New York, NY, USA, pp. 173-174. doi:10.1145/1858996.1859032.

de Camargo, V.V., Masiero, P.C., 2008. An approach to design crosscutting framework
families. In: Proceedings of the 2008 AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software. ACM, New York, NY, USA, pp. 3:1-3:6.
doi:10.1145/1404891.1404894.

Chagas, F, Durelli, R., Terra, R., Camargo, V., 2016. KDM as the underlying meta-
model in architecture-conformance checking. In: Proceedings of the 30th Brazil-
ian Symposium on Software Engineering. ACM, pp. 103-112.

Chen, L, Wang,], Xu, M., Zeng, Z., 2010. Reengineering of java legacy system based
on aspect-oriented programming. In: 2010 Second International Workshop on
Education Technology and Computer Science, vol. 3, pp. 220-223. doi:10.1109/
ETCS.2010.298.

Clausen, A., 2012. Transforming Python into KDM to Support Cloud Conformance
Checking. Ph.D. thesis. Kiel University.

Cook, T.D., Campbell, D.T., 1979. Quasi-Experimentation: Design & Analysis Issues
for Field Settings. Houghton Mifflin.

Durelli, R.S., Santibdiiez, D.S.M., Delamaro, M.E., de Camargo, V.V., 2014a. Towards
a refactoring catalogue for knowledge discovery metamodel. In: Proceedings of
the 2014 IEEE 15th International Conference on Information Reuse and Integra-
tion (IEEE IRI 2014), pp. 569-576. doi:10.1109/IR1.2014.7051940.

Durelli, R.S., Santibaiiez, D.S.M., Marinho, B., Honda, R., Delamaro, M.E., Anquetil, N.,
de Camargo, V.V, 2014b. A mapping study on architecture-driven moderniza-
tion. In: Proceedings of the 2014 IEEE 15th International Conference on Infor-
mation Reuse and Integration (IEEE IRI 2014), pp. 577-584. doi:10.1109/IR1.2014.
7051941.

Durelli, RSS., Viana, M.C,, de S. Landi, A., Durelli, V.H.S., Delamaro, M.E., de Ca-
margo, V.V., 2017. Improving the structure of KDM instances via refactorings: an
experimental study using KDM-re. In: Proceedings of the 31st Brazilian Sympo-
sium on Software Engineering. ACM, New York, NY, USA, pp. 174-183.

Evermann, J., 2007. A meta-level specification and profile for Aspect] in UML. In:
Proceedings of the 10th International Workshop on Aspect-oriented Modeling.
ACM, New York, NY, USA, pp. 21-27. doi:10.1145/1229375.1229379.

Hohenstein, U.D., Jdger, M.C., 2009. Using aspect-orientation in industrial projects:
appreciated or damned? In: Proceedings of the 8th ACM International Confer-
ence on Aspect-oriented Software Development, pp. 213-222. New York, NY,
USA.

Janior, J.U., Penteado, R.D., de Camargo, V.V., 2010. An overview and an empirical
evaluation of UML-AOF: an UML profile for aspect-oriented frameworks. In: Pro-
ceedings of the 2010 ACM Symposium on Applied Computing. ACM, New York,
NY, USA, pp. 2289-2296. doi:10.1145/1774088.1774564.

Kazman, R., Woods, S.G., Carriére, S.J., 1998. Requirements for integrating soft-
ware architecture and reengineering models: Corum II. In: Proceedings of the
Working Conference on Reverse Engineering (WCRE'98). IEEE Computer Society,
Washington, DC, USA, pp. 154-160.

Kiczales, G., Lamping,], Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Ir-
win, J., 1997. Aspect-oriented programming. In: ECOOP'97-Object-Oriented Pro-
gramming, pp. 220-242.

Kulesza, U., Soares, S., Chavez, C., Castor, E, Borba, P, Lucena, C., Masiero, P,
Sant’Anna, C., Ferrari, F, Alves, V., Coelho, R., Figueiredo, E., Pires, PF, Deli-
cato, F, Piveta, E., Silva, C., Camargo, V., Braga, R, Leite, J., Lemos, O., Men-
donga, N., Batista, T, Bonificio, R, Cacho, N. Silva, L, von Staa, A. Sil-
veira, F, Valente, M.T,, Alencar, F, Castro,]., Ramos, R., Penteado, R., Rubira, C.,
2013. The crosscutting impact of the AOSD Brazilian research community. J.
Syst. Softw. 86 (4), 905-933. SI : Software Engineering in Brazil: Retrospec-
tive and Prospective Views URL http://www.sciencedirect.com/science/article/
pii/S0164121212002427. doi: https://doi.org/10.1016/j.jss.2012.08.031.

Landi, A., Chagas, F,, Santos, B.M., Costa, R.S., Durelli, R,, Terra, R., de Camargo, V.V.,
2017. Supporting the specification and serialization of planned architectures in
architecture-driven modernization context. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), pp. 327-336.

Lehman, M.M., 1996. Laws of software evolution revisited. In: Montangero, C. (Ed.),
Software Process Technology. Springer, Berlin, Heidelberg, pp. 108-124.

Lesiecki, N., 2006. Applying Aspect] to J2EE application development. IEEE Softw. 23
(1), 24-32.

Martin Santibafiez, D.S., Durelli, R.S., de Camargo, V.V., 2015. A combined approach
for concern identification in KDM models. J. Braz. Comput. Soc. 21 (1), 10.
doi:10.1186/s13173-015-0030-3.

Normantas, K., Sosunovas, S., Vasilecas, 0., 2012. An overview of the knowledge
discovery meta-model. In: Proceedings of the 13th International Conference
on Computer Systems and Technologies. ACM, New York, NY, USA, pp. 52-57.
doi:10.1145/2383276.2383286.

OMG, 2009. Architecture-Driven Modernization Standards Roadmap doi:10.1016/j.
2ie.2008.12.063. Avaliable at http://adm.omg.org/.

OMG, 2016. OMG ® Specifications Business Modeling Specifications. Available at
http://www.omg.org/spec/.

Pérez-Castillo, I. G.-R., Piattini, M., 2011. Modern Software Engineering Concepts
and Practices: Advanced Approaches, Architecture-Driven Modernization. Chap-
ter 475-103. doi:10.4018/978-1-60960-215-4.

Pérez-Castillo, R, de Guzman, LG.-R, Piattini, M., 2011. Knowledge discovery
metamodel-ISO/IEC 19506: a standard to modernize legacy systems. Comput.
Stand. Interfaces 33 (6), 519-532. doi:10.1016/j.csi.2011.02.007.

Pérez-Castillo, R., de Guzman, I.G.-R,, Piattini, M., Weber, B., 2012. Integrating event
logs into KDM repositories. In: Proceedings of the 27th Annual ACM Symposium
on Applied Computing. ACM, New York, NY, USA, pp. 1095-1102.

https://doi.org/10.13039/501100002322
https://doi.org/10.13039/501100002848
https://doi.org/10.13039/501100001807
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0001
https://doi.org/10.1109/ICECCS.2011.25
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1109/TSE.2003.1183932
https://doi.org/10.1145/1858996.1859032
https://doi.org/10.1145/1404891.1404894
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0007
https://doi.org/10.1109/ETCS.2010.298
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0010
https://doi.org/10.1109/IRI.2014.7051940
https://doi.org/10.1109/IRI.2014.7051941
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0013
https://doi.org/10.1145/1229375.1229379
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0015
https://doi.org/10.1145/1774088.1774564
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0018
http://www.sciencedirect.com/science/article/pii/S0164121212002427
https://doi.org/10.1016/j.jss.2012.08.031
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0022
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0022
https://doi.org/10.1186/s13173-015-0030-3
https://doi.org/10.1145/2383276.2383286
https://doi.org/10.1016/j.gie.2008.12.063
http://adm.omg.org/
http://www.omg.org/spec/
http://doi.org/10.4018/978-1-60960-215-4
https://doi.org/10.1016/j.csi.2011.02.007
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0028

304 B.M. Santos, A.d.S. Landi and D.S. Santibdiiez et al./The Journal of Systems and Software 149 (2019) 285-304

Qaisar, Z.H., Anwar, N., Rehman, S.U., 2013. Using UML behavioral model to support
aspect oriented model. J. Softw. Eng. Appl. 6 (03), 98.

Rausch, A., Rumpe, B., Hoogendoorn, L., 2003. Aspect-oriented framework modeling.
In: Proceedings of the 4th AOSD Modeling with UML Workshop (UML Confer-
ence 2003).

Sadovykh, A., Vigier, L, Hoffmann, A., Grossmann, J., Ritter, T, Gomez, E., Es-
tekhin, O., 2009. Architecture driven modernization in practice 150; study re-
sults. In: 2009 14th IEEE International Conference on Engineering of Complex
Computer Systems, pp. 50-57. doi:10.1109/ICECCS.2009.39.

Santos, B.M., de Camargo, V.V., 2016. A reference architecture for KDM-based mod-
ernization tools. In: Proceedings of VI Workshop de Teses e Dissertagdes do CB-
SOFT (WTDSOFT 2016), pp. 1-9.

Santos, B.M., Durelli, R.S., Honda, RR., Camargo, V.V, 2014a. Investigating
lightweight and heavyweight KDM extensions for aspect-oriented modern-
ization. In: 11th Workshop on Software Modularity (WMod), Maceid, Brazil,
pp. 1-12.

Santos, B.M., Honda, R.R,, Durelli, R.S., d. Camargo, V.V., 2014b. KDM-AO: an aspect-
oriented extension of the knowledge discovery metamodel. In: 2014 Brazilian
Symposium on Software Engineering, pp. 61-70. doi:10.1109/SBES.2014.20.

Schutter, K.D., Adams, B., 2007. Aspect-orientation for revitalising legacy busi-
ness software. Electron Notes Theor. Comput. Sci. 166, 63-80. Proceedings
of the ERCIM Working Group on Software Evolution (2006). doi: https:
//doi.org/10.1016/j.entcs.2006.08.002URL http://www.sciencedirect.com/science/
article/pii/S1571066106005299.

Shahshahani, P.M., 2011. Extending the Knowledge Discovery Metamodel to Support
Aspect-Oriented Programming. Concordia University Master’s thesis. URL http:
//spectrum.library.concordia.ca/7329/.

Soares, S., Laureano, E., Borba, P, 2002. Implementing distribution and persis-
tence aspects with Aspect]. SIGPLAN Not. 37 (11), 174-190. doi:10.1145/583854.
582437.

Stein, D., Hanenberg, S., Unland, R., 2002. A UML-based aspect-oriented design no-
tation for Aspect]. In: Proceedings of the 1st international conference on Aspec-
t-oriented software development. ACM, pp. 106-112.

Ulrich, W.M., Newcomb, P, 2010. Information Systems Transformation: Architec-
ture-Driven Modernization Case Studies. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Visaggio, G., 2001. Ageing of a data-intensive legacy system:symptoms and reme-
dies. J. Softw. Mainten. 13 (5), 281-308. URL http://dl.acm.org/citation.cfm?id=
565153.565154.

Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J., 2011. The aligned rank transform
for nonparametric factorial analyses using only Anova procedures. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
New York, NY, USA, pp. 143-146. doi:10.1145/1978942.1978963.

Wohlin, C., Runeson, P, Host, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000. Ex-
perimentation in Software Engineering: An Introduction. Kluwer Academic Pub-
lishers, Norwell, MA, USA.

Zakaria, A.A., Hosny, H., Zeid, A., 2002. A UML extension for modeling aspect-ori-
ented systems. In: International Workshop on Aspect-Oriented Modeling with
UML, Germany.

Bruno Marinho Santos is graduated in information systems at Faculdade Integral
Diferencial (FACID) in 2010 and he obtained his master degree in computer science
in software engineering area at Federal University of Sdo Carlos (UFSCar) in 2014.
Nowadays, he is a Ph.D. student at UFSCar. He has experience in computer science
area, with emphasis in Computation Systems, acting mainly in the following sub-
jects: Aspect-Oriented Modernization, Architecture-Driven Modernization, Crosscut-
ting Frameworks, Knowledge Discovery Metamodel, and metamodel extensions.

André de Souza Landi is a system analyst at S2IT SOLUTIONS CONSULTORIA LTDA
working in a national project of UOL. He finished his master’s at University of Sdo
Carlos - UFSCar/DC in 2018. Nowdays, he is researching about the topics of Soft-
ware Architecture, Modularity, Model-Driven Engineering and new techniques and
framework for the Java language.

Daniel San Martin was chief information security officer in the Information Tech-
nology Department at Universidad Austral, Valdivia, Chile until February 2016. Prior
to joining the IT department, he was project manager and Information Analyst in
several public and private business like Mining Industry, Educational Institutions
and IT Consultory. He received a B.S. degree in Engineering Science and Computer
Engineering from Universidad Catélica del Norte, Antofagasta, Chile and M.Sc. de-
gree in computer science from Universidade Federal de Sdo Carlos, SP, Brazil. Cur-
rently, he is a Ph.D. Student at Universidade Federal de Sdo Carlos, Brazil. His re-
search interests in computer science are in the area of software engineering with
special interest in adaptive systems.

Rafael S. Durelli is professor at Science Computer Department of Federal Univer-
sity of Lavras (UFLA) in Brazil. He finished his Ph.D. at University of Sdo Paulo -
USP/ICMC in 2016. He is a member of PqES/DCC (Pesquisa em Engenharia de Soft-
ware).

Valter Vieira de Camargo is an associate professor at Computing Department of the
Federal University of Sdo Carlos (UFSCar) in Brazil. He has co-authored around 130
research papers, covering the topics of Software Architecture, Software Moderniza-
tion, Adaptive Systems, Modularity and Model-Driven Engineering. He finished his
Ph.D. in 2006 and participated as a visiting researcher at University of Twente in
2013. He has also coordinated the AdvanSE (Advanced Research on Software En-
ginering) Group since 2009.

http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0030
https://doi.org/10.1109/ICECCS.2009.39
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0033
https://doi.org/10.1109/SBES.2014.20
https://doi.org/10.1016/j.entcs.2006.08.002
http://www.sciencedirect.com/science/article/pii/S1571066106005299
http://spectrum.library.concordia.ca/7329/
https://doi.org/10.1145/583854.582437
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0039
http://dl.acm.org/citation.cfm?id=565153.565154
https://doi.org/10.1145/1978942.1978963
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30271-1/sbref0043

	Evaluating the extension mechanisms of the knowledge discovery metamodel for aspect-oriented modernizations
	1 Introduction
	2 ADM & KDM
	2.1 Code package
	2.2 Kdm package
	2.3 Extension alternatives for KDM
	2.3.1 Lightweight extensions
	2.3.2 Heavyweight extensions

	2.4 Aspect-Oriented modernization scenario

	3 Aspect-oriented extensions of KDM
	3.1 The lightweight AO extension
	3.2 The heavyweight AO extension

	4 Evaluation
	4.1 Method
	4.1.1 Participants
	4.1.2 The aspect-oriented framework
	4.1.3 Selection of variables
	4.1.4 The planning of the experiment

	4.2 Operational steps of the experiment
	4.2.1 Preparation of the experiment
	4.2.2 Execution of the experiment

	4.3 Data validation of development activities
	4.3.1 On time variable
	4.3.2 On error variable

	4.4 Data validation of maintenance activities
	4.4.1 On time variable
	4.4.2 On error variable

	4.5 Discussion of results

	5 Threats to validity
	5.1 Internal validity
	5.2 External validity
	5.3 Conclusion validity
	5.4 Construct validity

	6 Related works
	6.1 Specific approaches - KDM extensions
	6.2 Generic approaches - UML extensions
	6.3 Aspect-oriented approaches in legacy systems

	7 Lessons learned and limitations
	8 Conclusion
	Acknowledgements
	References

